38 research outputs found

    ISimDL: Importance Sampling-Driven Acceleration of Fault Injection Simulations for Evaluating the Robustness of Deep Learning

    Full text link
    Deep Learning (DL) systems have proliferated in many applications, requiring specialized hardware accelerators and chips. In the nano-era, devices have become increasingly more susceptible to permanent and transient faults. Therefore, we need an efficient methodology for analyzing the resilience of advanced DL systems against such faults, and understand how the faults in neural accelerator chips manifest as errors at the DL application level, where faults can lead to undetectable and unrecoverable errors. Using fault injection, we can perform resilience investigations of the DL system by modifying neuron weights and outputs at the software-level, as if the hardware had been affected by a transient fault. Existing fault models reduce the search space, allowing faster analysis, but requiring a-priori knowledge on the model, and not allowing further analysis of the filtered-out search space. Therefore, we propose ISimDL, a novel methodology that employs neuron sensitivity to generate importance sampling-based fault-scenarios. Without any a-priori knowledge of the model-under-test, ISimDL provides an equivalent reduction of the search space as existing works, while allowing long simulations to cover all the possible faults, improving on existing model requirements. Our experiments show that the importance sampling provides up to 15x higher precision in selecting critical faults than the random uniform sampling, reaching such precision in less than 100 faults. Additionally, we showcase another practical use-case for importance sampling for reliable DNN design, namely Fault Aware Training (FAT). By using ISimDL to select the faults leading to errors, we can insert the faults during the DNN training process to harden the DNN against such faults. Using importance sampling in FAT reduces the overhead required for finding faults that lead to a predetermined drop in accuracy by more than 12x.Comment: Under review at IJCNN202

    RobCaps: Evaluating the Robustness of Capsule Networks against Affine Transformations and Adversarial Attacks

    Full text link
    Capsule Networks (CapsNets) are able to hierarchically preserve the pose relationships between multiple objects for image classification tasks. Other than achieving high accuracy, another relevant factor in deploying CapsNets in safety-critical applications is the robustness against input transformations and malicious adversarial attacks. In this paper, we systematically analyze and evaluate different factors affecting the robustness of CapsNets, compared to traditional Convolutional Neural Networks (CNNs). Towards a comprehensive comparison, we test two CapsNet models and two CNN models on the MNIST, GTSRB, and CIFAR10 datasets, as well as on the affine-transformed versions of such datasets. With a thorough analysis, we show which properties of these architectures better contribute to increasing the robustness and their limitations. Overall, CapsNets achieve better robustness against adversarial examples and affine transformations, compared to a traditional CNN with a similar number of parameters. Similar conclusions have been derived for deeper versions of CapsNets and CNNs. Moreover, our results unleash a key finding that the dynamic routing does not contribute much to improving the CapsNets' robustness. Indeed, the main generalization contribution is due to the hierarchical feature learning through capsules.Comment: To appear at the 2023 International Joint Conference on Neural Networks (IJCNN), Queensland, Australia, June 202

    Q-CapsNets: A Specialized Framework for Quantizing Capsule Networks

    Get PDF
    Capsule Networks (CapsNets), recently proposed by the Google Brain team, have superior learning capabilities in machine learning tasks, like image classification, compared to the traditional CNNs. However, CapsNets require extremely intense computations and are difficult to be deployed in their original form at the resource-constrained edge devices. This paper makes the first attempt to quantize CapsNet models, to enable their efficient edge implementations, by developing a specialized quantization framework for CapsNets. We evaluate our framework for several benchmarks. On a deep CapsNet model for the CIFAR10 dataset, the framework reduces the memory footprint by 6.2x, with only 0.15% accuracy loss. We will open-source our framework at https://git.io/JvDIF in August 2020.Comment: Accepted for publication at Design Automation Conference 2020 (DAC 2020

    FasTrCaps: An Integrated Framework for Fast yet Accurate Training of Capsule Networks

    Get PDF
    Recently, Capsule Networks (CapsNets) have shown improved performance compared to the traditional Convolutional Neural Networks (CNNs), by encoding and preserving spatial relationships between the detected features in a better way. This is achieved through the so-called Capsules (i.e., groups of neurons) that encode both the instantiation probability and the spatial information. However, one of the major hurdles in the wide adoption of CapsNets is their gigantic training time, which is primarily due to the relatively higher complexity of their new constituting elements that are different from CNNs.In this paper, we implement different optimizations in the training loop of the CapsNets, and investigate how these optimizations affect their training speed and the accuracy. Towards this, we propose a novel framework FasTrCaps that integrates multiple lightweight optimizations and a novel learning rate policy called WarmAdaBatch (that jointly performs warm restarts and adaptive batch size), and steers them in an appropriate way to provide high training-loop speedup at minimal accuracy loss. We also propose weight sharing for capsule layers. The goal is to reduce the hardware requirements of CapsNets by removing unused/redundant connections and capsules, while keeping high accuracy through tests of different learning rate policies and batch sizes. We demonstrate that one of the solutions generated by the FasTrCaps framework can achieve 58.6% reduction in the training time, while preserving the accuracy (even 0.12% accuracy improvement for the MNIST dataset), compared to the CapsNet by Google Brain [25]. Moreover, the Pareto-optimal solutions generated by FasTrCaps can be leveraged to realize trade-offs between training time and achieved accuracy. We have open-sourced our framework on GitHub 1

    Mappatura speditiva tridimensionale e multi-temporale mediante UAV. I casi di Pescara del Tronto e Accumoli

    Get PDF
    L’utilizzo dei Sistemi Aeromobili a Pilotaggio Remoto (SAPR), definiti anche come Unmanned Aerial Vehicles (UAVs), ha sicuramente ricoperto un ruolo centrale durante le diverse fasi di gestione dell’emergenza in Centro Italia a seguito del sisma del 2016. Per la prima volta questi sistemi sono stati utilizzati in maniera estensiva e continuativa durante le operazioni sul campo, grazie soprattutto alla presenza del Nucleo SAPR del Corpo Nazionale dei Vigili del Fuoco con il quale i diversi ricercatori del Politecnico di Torino hanno strettamente collaborato. Tali esperienze congiunte sono state fondamentali per definire le esigenze degli operatori sul campo e per mettere a punto delle strategie operative per la georeferenziazione dei blocchi fotogrammetrici, anche con strategia multi-temporale, atte a massimizzare il contributo derivante dall’impiego dei SAPR. In particolare, i prodotti fotogrammetrici derivati dalle acquisizioni effettuate con tali sensori sono stati analizzati per valutarne il contributo nelle fasi di damage assessment

    Acute Delta Hepatitis in Italy spanning three decades (1991–2019): Evidence for the effectiveness of the hepatitis B vaccination campaign

    Get PDF
    Updated incidence data of acute Delta virus hepatitis (HDV) are lacking worldwide. Our aim was to evaluate incidence of and risk factors for acute HDV in Italy after the introduction of the compulsory vaccination against hepatitis B virus (HBV) in 1991. Data were obtained from the National Surveillance System of acute viral hepatitis (SEIEVA). Independent predictors of HDV were assessed by logistic-regression analysis. The incidence of acute HDV per 1-million population declined from 3.2 cases in 1987 to 0.04 in 2019, parallel to that of acute HBV per 100,000 from 10.0 to 0.39 cases during the same period. The median age of cases increased from 27 years in the decade 1991-1999 to 44 years in the decade 2010-2019 (p < .001). Over the same period, the male/female ratio decreased from 3.8 to 2.1, the proportion of coinfections increased from 55% to 75% (p = .003) and that of HBsAg positive acute hepatitis tested for by IgM anti-HDV linearly decreased from 50.1% to 34.1% (p < .001). People born abroad accounted for 24.6% of cases in 2004-2010 and 32.1% in 2011-2019. In the period 2010-2019, risky sexual behaviour (O.R. 4.2; 95%CI: 1.4-12.8) was the sole independent predictor of acute HDV; conversely intravenous drug use was no longer associated (O.R. 1.25; 95%CI: 0.15-10.22) with this. In conclusion, HBV vaccination was an effective measure to control acute HDV. Intravenous drug use is no longer an efficient mode of HDV spread. Testing for IgM-anti HDV is a grey area requiring alert. Acute HDV in foreigners should be monitored in the years to come

    Evolving trends in the management of acute appendicitis during COVID-19 waves. The ACIE appy II study

    Get PDF
    Background: In 2020, ACIE Appy study showed that COVID-19 pandemic heavily affected the management of patients with acute appendicitis (AA) worldwide, with an increased rate of non-operative management (NOM) strategies and a trend toward open surgery due to concern of virus transmission by laparoscopy and controversial recommendations on this issue. The aim of this study was to survey again the same group of surgeons to assess if any difference in management attitudes of AA had occurred in the later stages of the outbreak. Methods: From August 15 to September 30, 2021, an online questionnaire was sent to all 709 participants of the ACIE Appy study. The questionnaire included questions on personal protective equipment (PPE), local policies and screening for SARS-CoV-2 infection, NOM, surgical approach and disease presentations in 2021. The results were compared with the results from the previous study. Results: A total of 476 answers were collected (response rate 67.1%). Screening policies were significatively improved with most patients screened regardless of symptoms (89.5% vs. 37.4%) with PCR and antigenic test as the preferred test (74.1% vs. 26.3%). More patients tested positive before surgery and commercial systems were the preferred ones to filter smoke plumes during laparoscopy. Laparoscopic appendicectomy was the first option in the treatment of AA, with a declined use of NOM. Conclusion: Management of AA has improved in the last waves of pandemic. Increased evidence regarding SARS-COV-2 infection along with a timely healthcare systems response has been translated into tailored attitudes and a better care for patients with AA worldwide
    corecore