6 research outputs found

    The Importance of Wind-induced Sediment Fluxes on Tidal Flats

    No full text
    Port maintenance and nature preservation are two often conflicting aspects of coastal management. Within a Pilot Project in the Western Wadden Sea (the Netherlands - see Figure1a) we test a win-win solution that could reduce harbour siltation while simultaneously stimulate saltmarsh development.For this purpose, fine material, dredged in the Port of Harlingen, is used to increase the bed level of the intertidal flats at North-East of the harbour. The sediment is not disposed directly on the mudflat but at the North-East edge of the Kimstergat Channel (Figure1b). The strategy is based on the presumption that the flood dominant system results in an extra net sediment transport onto the Koehool Mudflat (Figure1b). The imposed higher mud supply will gradually feed the mudflat (hence the name of the project: The Mud Motor) and is expected to accelerate the rate of bed level increase and, as consequence, the switch from a bare to a vegetated mudflat state.Environmental Fluid Mechanic

    Winds of opportunity: The effects of wind on intertidal flat accretion

    No full text
    Intertidal ecosystems are threatened by sea level rise and anthropogenic pressures. Understanding the processes controlling the morphodynamic developments of tidal flats is crucial for sustainable management of these systems. Analysis of three extensive fieldwork campaigns carried out on two adjacent mudflats fringing the Dutch Western Wadden Sea (from 2016 to 2018) provides important new insights into the conditions controlling a permanent increase of tidal flat elevation (‘accretion’), in which the wind and consolidation processes play a pivotal role. Sediment temporarily settles (‘deposition’) on the flats during a period of high suspended sediment availability and water level setup (often following a storm). A tidal flat accretes when a new layer of sediment over-consolidates: a state in which the bed strength is much larger than it would attain during inundated conditions, due to high stresses experienced during prolonged drying. This happens when a phase of sediment deposition is followed by a sufficiently long period with a low ambient water table (phreatic level) and aerial exposure. The chronological order of sediment deposition and over-consolidation provides a window of opportunity for tidal flat accretion. Such a window of opportunity depends on the hydrodynamic forcing (tides, waves, wind), on the consolidation state of the bed, and on sediment availability. Wind plays a crucial role in creating the conditions for tidal flat accretion because the wind direction influences the duration of a low water table and aerial exposure and therefore (over-)consolidation rates, which we refer to as the ‘winds of opportunity’. An abundance of sediment may even limit tidal flat accretion, because large deposition rates substantially increase consolidation timescales.Environmental Fluid MechanicsCoastal Engineerin

    Sediment Disposals in Estuarine Channels Alter the Eco-Morphology of Intertidal Flats

    No full text
    Dredging of navigation channels in estuaries affects estuarine morphology and ecosystems. In the Western Scheldt, a two-channel estuary in the Netherlands, the navigation channel is deepened and the sediment is relocated to other parts of the estuary. We analyzed the response of an intertidal flat to sediment disposals in its adjacent channel. Decades of high-frequency monitoring data from the intertidal flat show a shift from erosion toward accretion and reveal a sequence of cascading eco-morphological consequences. We document significant morphological changes not only at the disposal sites, but also at the nearby intertidal flats. Disposals influence channel bank migration, driving changes in the evolution of the intertidal flat hydrodynamics, morphology, and grain sizes. The analyzed disposals related to an expansion of the channel bank, an increase in bed level of the intertidal flat, a decrease in flow velocities on this higher elevated flat, and locally a decrease in grain sizes. These changes in turn affect intertidal flat benthic communities (increased in quantity in this case) and the evolution of the adjacent salt marsh (retreated less or even expanded in this case). The shifts in evolution may occur years after dredged disposal begins, especially in zones of the flats farther away from the disposal locations. The consequences of sediment disposals that we identify stress the urgency of managing such interventions with integrated strategies on a system scale.Coastal EngineeringEnvironmental Fluid Mechanic

    The impact of wind on flow and sediment transport over intertidal flats

    No full text
    Sediment transport over intertidal flats is driven by a combination of waves, tides, and wind-driven flow. In this study we aimed at identifying and quantifying the interactions between these processes. A five week long dataset consisting of flow velocities, waves, water depths, suspended sediment concentrations, and bed level changes was collected at two locations across a tidal flat in the Wadden Sea (The Netherlands). A momentum balance was evaluated, based on field data, for windy and non-windy conditions. The results show that wind speed and direction have large impacts on the net flow, and that even moderate wind can reverse the tidal flow. A simple analytical tide–wind interaction model shows that the wind-induced reversal can be predicted as a function of tidal flow amplitude and wind forcing. Asymmetries in sediment transport are not only related to the tide–wind interaction, but also to the intratidal asymmetries in sediment concentration. These asymmetries are influenced by wind-induced circulation interacting with the large scale topography. An analysis of the shear stresses induced by waves and currents revealed the relative contributions of local processes (resuspension) and large-scale processes (advection) at different tidal flat elevations.Environmental Fluid MechanicsCoastal Engineerin

    Variations in storm-induced bed level dynamics across intertidal flats

    No full text
    Hydrodynamic forces on intertidal flats vary over a range of temporal and spatial scales. These spatiotemporal inhomogeneities have implications for intertidal flat morphodynamics and ecology. We determine whether storm events are capable of altering the long-term morphological evolution of intertidal flats, and unravel the contributions of tidal flow, wind-driven flow, waves, and water depth on inhomogeneities in bed level dynamics (bed level changes over ~days) across these areas. We complement decades of bed level measurements on eight intertidal flats in two estuaries in the Netherlands with an extensive 1-month field campaign on one of those flats. Across this intertidal flat, the hydrodynamics and morphodynamics of a storm event were captured, including the post-storm recovery. We show that individual events can persistently alter the morphological evolution of intertidal flats; magnitudes of some bed level changes are even comparable to years of continuous evolution. The morphological impacts of events are largely controlled by the relative timing of the forcing processes, and not solely by their magnitudes. Spatiotemporal variations in bed level dynamics of intertidal flats are driven by a combination of: (1) the inhomogeneous distributions of the hydrodynamic forcing processes (including the under-explored role of the wind); and (2) the linear proportionality between bed level dynamics and the local bed slope.Coastal EngineeringEnvironmental Fluid Mechanic

    Beneficial use of dredged sediment to enhance salt marsh development by applying a ‘Mud Motor’

    No full text
    We test an innovative approach to beneficially re-use dredged sediment to enhance salt marsh development. A Mud Motor is a dredged sediment disposal in the form of a semi-continuous source of mud in a shallow tidal channel allowing natural processes to disperse the sediment to nearby mudflats and salt marshes. We describe the various steps in the design of a Mud Motor pilot: numerical simulations with a sediment transport model to explore suitable disposal locations, a tracer experiment to measure the transport fate of disposed mud, assessment of the legal requirements, and detailing the planning and technical feasibility. An extensive monitoring and research programme was designed to measure sediment transport rates and the response of intertidal mudflats and salt marshes to an increased sediment load. Measurements include the sediment transport in the tidal channel and on the shallow mudflats, the vertical accretion of intertidal mudflats and salt marsh, and the salt marsh vegetation cover and composition. In the Mud Motor pilot a total of 470,516 m3 of fine grained sediment (D50 of ∼10 μm) was disposed over two winter seasons, with an average of 22 sediment disposals per week of operation. Ship-based measurements revealed a periodic vertical salinity stratification that is inverted compared to a classical estuary and that is working against the asymmetric flood-dominated transport direction. Field measurements on the intertidal mudflats showed that the functioning of the Mud Motor, i.e. the successful increased mud transport toward the salt marsh, is significantly dependent on wind and wave forcing. Accretion measurements showed relatively large changes in surface elevation due to deposition and erosion of layers of watery mud with a thickness of up to 10 cm on a time scale of days. The measurements indicate notably higher sediment dynamics during periods of Mud Motor disposal. The salt marsh demonstrated significant vertical accretion though this has not yet led to horizontal expansion because there was more hydrodynamic stress than foreseen. In carrying out the pilot we learned that the feasibility of a Mud Motor depends on an assessment of additional travel time for the dredger, the effectiveness on salt marsh growth, reduced dredging volumes in a port, and many other practical issues. Our improved understanding on the transport processes in the channel and on the mudflats and salt marsh yields design lessons and guiding principles for future applications of sediment management in salt marsh development that include a Mud Motor approach.Environmental Fluid Mechanic
    corecore