152 research outputs found

    The classical point-electron in Colombeau's theory of nonlinear generalized functions

    Full text link
    The electric and magnetic fields of a pole-dipole singularity attributed to a point-electron-singularity in the Maxwell field are expressed in a Colombeau algebra of generalized functions. This enables one to calculate dynamical quantities quadratic in the fields which are otherwise mathematically ill-defined: The self-energy (i.e., `mass'), the self-angular momentum (i.e., `spin'), the self-momentum (i.e., `hidden momentum'), and the self-force. While the total self-force and self-momentum are zero, therefore insuring that the electron-singularity is stable, the mass and the spin are diverging integrals of delta-squared-functions. Yet, after renormalization according to standard prescriptions, the expressions for mass and spin are consistent with quantum theory, including the requirement of a gyromagnetic ratio greater than one. The most striking result, however, is that the electric and magnetic fields differ from the classical monopolar and dipolar fields by delta-function terms which are usually considered as insignificant, while in a Colombeau algebra these terms are precisely the sources of the mechanical mass and spin of the electron-singularity.Comment: 30 pages. Final published version with a few minor correction

    Multiplication of Distributions and Nonperturbative Calculations of Transition Probabilities

    Full text link
    In a mathematical context in which one can multiply distributions the "`formal"' nonperturbative canonical Hamiltonian formalism in Quantum Field Theory makes sense mathematically, which can be understood a priori from the fact the so called "`infinite quantities"' make sense unambiguously (but are not classical real numbers). The perturbation series does not make sense. A novelty appears when one starts to compute the transition probabilities. The transition probabilities have to be computed in a nonperturbative way which, at least in simplified mathematical examples (even those looking like nonrenormalizable series), gives real values between 0 and 1 capable to represent probabilities. However these calculations should be done numerically and we have only been able to compute simplified mathematical examples due to the fact these calculations appear very demanding in the physically significant situation with an infinite dimensional Fock space and the QFT operators

    Expanding impulsive gravitational waves

    Get PDF
    We explicitly demonstrate that the known solutions for expanding impulsive spherical gravitational waves that have been obtained by a "cut and paste" method may be considered to be impulsive limits of the Robinson-Trautman vacuum type N solutions. We extend these results to all the generically distinct subclasses of these solutions in Minkowski, de Sitter and anti-de Sitter backgrounds. For these we express the solutions in terms of a continuous metric. Finally, we also extend the class of spherical shock gravitational waves to include a non-zero cosmological constant.Comment: 11 pages, LaTeX, To appear in Class. Quantum Gra

    An algebraic approach to manifold-valued generalized functions

    Full text link
    We discuss the nature of structure-preserving maps of varies function algebras. In particular, we identify isomorphisms between special Colombeau algebras on manifolds with invertible manifold-valued generalized functions in the case of smooth parametrization. As a consequence, and to underline the consistency and validity of this approach, we see that this generalized version on algebra isomorphisms in turn implies the classical result on algebras of smooth functions.Comment: 7 page

    On the completeness of impulsive gravitational wave space-times

    Full text link
    We consider a class of impulsive gravitational wave space-times, which generalize impulsive pp-waves. They are of the form M=N×R12M=N\times\mathbb{R}^2_1, where (N,h)(N,h) is a Riemannian manifold of arbitrary dimension and MM carries the line element ds2=dh2+2dudv+f(x)δ(u)du2ds^2=dh^2+ 2dudv+f(x)\delta(u)du^2 with dh2dh^2 the line element of NN and δ\delta the Dirac measure. We prove a completeness result for such space-times MM with complete Riemannian part NN.Comment: 13 pages, minor changes suggested by the referee

    On the Geroch-Traschen class of metrics

    No full text
    We compare two approaches to semi-Riemannian metrics of low regularity. The maximally 'reasonable' distributional setting of Geroch and Traschen is shown to be consistently contained in the more general setting of nonlinear distributional geometry in the sense of Colombea
    corecore