6 research outputs found

    The Plant-Associated Microbe Gene Ontology (PAMGO) Consortium: community development of new Gene Ontology terms describing biological processes involved in microbe-host interactions

    Get PDF
    All microbes that form beneficial, neutral, or pathogenic associations with hosts face similar challenges. They must physically adhere to and/or gain entry to host tissues; they must avoid, suppress, or tolerate host defenses; they must acquire nutrients from the host and successfully multiply. Microbes that associate with hosts come from many kingdoms of life and include bacteria, fungi, oomycetes, and nematodes. The increasing numbers of full genome sequences from these diverse microbes provide the opportunity to discover common mechanisms by which the microbes forge and maintain intimate associations with host organisms. However, cross-genome analyses have been hindered by lack of a universal vocabulary for describing biological processes involved in the interplay between microbes and their hosts. The Plant-Associated Microbe Gene Ontology (PAMGO) Consortium has been working for three years as an official interest group of the Gene Ontology (GO) Consortium to develop well-defined GO terms that describe many of the biological processes common to diverse plant- and animal-associated microbes. Creating these terms, over 700 at this time, has required a synthesis of diverse points of view from many research communities. The use of these terms in genome annotation will allow cross-genome searches for genes with common function (without demand for sequence similarity) and also improve the interpretation of data from high-throughput microarray and proteomic analyses. This article, and the more focused mini-reviews that make up this supplement to BMC Microbiology, describe the development and use of these terms

    Common and contrasting themes in host cell-targeted effectors from bacterial, fungal, oomycete and nematode plant symbionts described using the Gene Ontology

    Get PDF
    A wide diversity of plant-associated symbionts, including microbes, produce proteins that can enter host cells, or are injected into host cells in order to modify the physiology of the host to promote colonization. These molecules, termed effectors, commonly target the host defense signaling pathways in order to suppress the defense response. Others target the gene expression machinery or trigger specific modifications to host morphology or physiology that promote the nutrition and proliferation of the symbiont. When recognized by the host's surveillance machinery, which includes cognate resistance (R) gene products, defense responses are engaged to restrict pathogen proliferation. Effectors from diverse symbionts may be delivered into plant cells via varied mechanisms, including whole organism cellular entry (viruses, some bacteria and fungi), type III and IV secretion (in bacteria), physical injection (nematodes and insects) and protein translocation signal sequences (oomycetes and fungi). This mini-review will summarize both similarities and differences in effectors and effector delivery systems found in diverse plant-associated symbionts as well as how these are described with Plant-Associated Microbe Gene Ontology (PAMGO) terms

    Gene Ontology annotation highlights shared and divergent pathogenic strategies of type III effector proteins deployed by the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic Escherichia coli strains

    Get PDF
    Genome-informed identification and characterization of Type III effector repertoires in various bacterial strains and species is revealing important insights into the critical roles that these proteins play in the pathogenic strategies of diverse bacteria. However, non-systematic discipline-specific approaches to their annotation impede analysis of the accumulating wealth of data and inhibit easy communication of findings among researchers working on different experimental systems. The development of Gene Ontology (GO) terms to capture biological processes occurring during the interaction between organisms creates a common language that facilitates cross-genome analyses. The application of these terms to annotate type III effector genes in different bacterial species – the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic strains of Escherichia coli – illustrates how GO can effectively describe fundamental similarities and differences among different gene products deployed as part of diverse pathogenic strategies. In depth descriptions of the GO annotations for P. syringae pv tomato DC3000 effector AvrPtoB and the E. coli effector Tir are described, with special emphasis given to GO capability for capturing information about interacting proteins and taxa. GO-highlighted similarities in biological process and molecular function for effectors from additional pathosystems are also discussed

    Programmed cell death in host-symbiont associations, viewed through the Gene Ontology

    Get PDF
    Manipulation of programmed cell death (PCD) is central to many host microbe interactions. Both plant and animal cells use PCD as a powerful weapon against biotrophic pathogens, including viruses, which draw their nutrition from living tissue. Thus, diverse biotrophic pathogens have evolved many mechanisms to suppress programmed cell death, and mutualistic and commensal microbes may employ similar mechanisms. Necrotrophic pathogens derive their nutrition from dead tissue, and many produce toxins specifically to trigger programmed cell death in their hosts. Hemibiotrophic pathogens manipulate PCD in a most exquisite way, suppressing PCD during the biotrophic phase and stimulating it during the necrotrophic phase. This mini-review will summarize the mechanisms that have evolved in diverse microbes and hosts for controlling PCD and the Gene Ontology terms developed by the Plant-Associated Microbe Gene Ontology (PAMGO) Consortium for describing those mechanisms

    Summary

    Get PDF
    Meeting overvie
    corecore