15 research outputs found

    Independent external validation of the QRISK3 cardiovascular disease risk prediction model using UK Biobank

    Get PDF
    Objective To externally evaluate the performance of QRISK3 for predicting 10 year risk of cardiovascular disease (CVD) in the UK Biobank cohort. Methods We used data from the UK Biobank, a large-scale prospective cohort study of 403 370 participants aged 40–69 years recruited between 2006 and 2010 in the UK. We included participants with no previous history of CVD or statin treatment and defined the outcome to be the first occurrence of coronary heart disease, ischaemic stroke or transient ischaemic attack, derived from linked hospital inpatient records and death registrations. Results Our study population included 233 233 women and 170 137 men, with 9295 and 13 028 incident CVD events, respectively. Overall, QRISK3 had moderate discrimination for UK Biobank participants (Harrell’s C-statistic 0.722 in women and 0.697 in men) and discrimination declined by age (<0.62 in all participants aged 65 years or older). QRISK3 systematically overpredicted CVD risk in UK Biobank, particularly in older participants, by as much as 20%. Conclusions QRISK3 had moderate overall discrimination in UK Biobank, which was best in younger participants. The observed CVD risk for UK Biobank participants was lower than that predicted by QRISK3, particularly for older participants. It may be necessary to recalibrate QRISK3 or use an alternate model in studies that require accurate CVD risk prediction in UK Biobank

    Aldosterone does not require angiotensin II to activate NCC through a WNK4–SPAK–dependent pathway

    Get PDF
    We and others have recently shown that angiotensin II can activate the sodium chloride cotransporter (NCC) through a WNK4–SPAK-dependent pathway. Because WNK4 was previously shown to be a negative regulator of NCC, it has been postulated that angiotensin II converts WNK4 to a positive regulator. Here, we ask whether aldosterone requires angiotensin II to activate NCC and if their effects are additive. To do so, we infused vehicle or aldosterone in adrenalectomized rats that also received the angiotensin receptor blocker losartan. In the presence of losartan, aldosterone was still capable of increasing total and phosphorylated NCC twofold to threefold. The kinases WNK4 and SPAK also increased with aldosterone and losartan. A dose-dependent relationship between aldosterone and NCC, SPAK, and WNK4 was identified, suggesting that these are aldosterone-sensitive proteins. As more functional evidence of increased NCC activity, we showed that rats receiving aldosterone and losartan had a significantly greater natriuretic response to hydrochlorothiazide than rats receiving losartan only. To study whether angiotensin II could have an additive effect, rats receiving aldosterone with losartan were compared with rats receiving aldosterone only. Rats receiving aldosterone only retained more sodium and had twofold to fourfold increase in phosphorylated NCC. Together, our results demonstrate that aldosterone does not require angiotensin II to activate NCC and that WNK4 appears to act as a positive regulator in this pathway. The additive effect of angiotensin II may favor electroneutral sodium reabsorption during hypovolemia and may contribute to hypertension in diseases with an activated renin–angiotensin–aldosterone system

    Shedding Light on the Galaxy Luminosity Function

    Full text link
    From as early as the 1930s, astronomers have tried to quantify the statistical nature of the evolution and large-scale structure of galaxies by studying their luminosity distribution as a function of redshift - known as the galaxy luminosity function (LF). Accurately constructing the LF remains a popular and yet tricky pursuit in modern observational cosmology where the presence of observational selection effects due to e.g. detection thresholds in apparent magnitude, colour, surface brightness or some combination thereof can render any given galaxy survey incomplete and thus introduce bias into the LF. Over the last seventy years there have been numerous sophisticated statistical approaches devised to tackle these issues; all have advantages -- but not one is perfect. This review takes a broad historical look at the key statistical tools that have been developed over this period, discussing their relative merits and highlighting any significant extensions and modifications. In addition, the more generalised methods that have emerged within the last few years are examined. These methods propose a more rigorous statistical framework within which to determine the LF compared to some of the more traditional methods. I also look at how photometric redshift estimations are being incorporated into the LF methodology as well as considering the construction of bivariate LFs. Finally, I review the ongoing development of completeness estimators which test some of the fundamental assumptions going into LF estimators and can be powerful probes of any residual systematic effects inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy & Astrophysics Review. This version: bring in line with A&AR format requirements, also minor typo corrections made, additional citations and higher rez images adde

    Calculating polygenic risk scores (PRS) in UK Biobank: A practical guide for epidemiologists

    No full text
    A polygenic risk score estimates the genetic risk of an individual for some disease or trait, calculated by aggregating the effect of many common variants associated with the condition. With the increasing availability of genetic data in large cohort studies such as the UK Biobank, inclusion of this genetic risk as a covariate in statistical analyses is becoming more widespread. Previously this required specialist knowledge, but as tooling and data availability have improved it has become more feasible for statisticians and epidemiologists to calculate existing scores themselves for use in analyses. While tutorial resources exist for conducting genome-wide association studies and generating of new polygenic risk scores, fewer guides exist for the simple calculation and application of existing genetic scores. This guide outlines the key steps of this process: selection of suitable polygenic risk scores from the literature, extraction of relevant genetic variants and verification of their quality, calculation of the risk score and key considerations of its inclusion in statistical models, using the UK Biobank imputed data as a model data set. Many of the techniques in this guide will generalize to other datasets, however we also focus on some of the specific techniques required for using data in the formats UK Biobank have selected. This includes some of the challenges faced when working with large numbers of variants, where the computation time required by some tools is impractical. While we have focused on only a couple of tools, which may not be the best ones for every given aspect of the process, one barrier to working with genetic data is the sheer volume of tools available, and the difficulty for a novice to assess their viability. By discussing in depth a couple of tools that are adequate for the calculation even at large scale, we hope to make polygenic risk scores more accessible to a wider range of researchers

    Assessing agreement between different polygenic risk scores in the UK Biobank

    No full text
    Polygenic risk scores (PRS) are proposed for use in clinical and research settings for risk stratification. However, there are limited investigations on how different PRS diverge from each other in risk prediction of individuals. We compared two recently published PRS for each of three conditions, breast cancer, hypertension and dementia, to assess the stability of using these algorithms for risk prediction in a single large population. We used imputed genotyping data from the UK Biobank prospective cohort, limited to the White British subset. We found that: (1) 20% or more of SNPs in the first PRS were not represented in the more recent PRS for all three diseases, by the same SNP or a surrogate with R2 > 0.8 by linkage disequilibrium (LD). (2) Although the difference in the area under the receiver operating characteristic curve (AUC) obtained using the two PRS is hardly appreciable for all three diseases, there were large differences in individual risk prediction between the two PRS. For instance, for each disease, of those classified in the top 5% of risk by the first PRS, over 60% were not so classified by the second PRS. We found substantial discordance between different PRS for the same disease, indicating that individuals could receive different medical advice depending on which PRS is used to assess their genetic susceptibility. It is desirable to resolve this uncertainty before using PRS for risk stratification in clinical settings

    Composition and sources of lipid compounds in speleothem calcite from southwestern Oregon and their paleoenvironmental implications

    No full text
    We analyzed speleothem calcite from the Oregon Caves National Monument, southwestern Oregon, to determine the preservation, distribution, concentrations and sources of aliphatic lipid compounds preserved in the calcite. Maximum speleothem growth rate occurs during interglaciations and minimum during glacial intervals. Concentrations of the total lipid compounds range from 0.5 to 12.9 μg g−1. They increase at times of low speleothem growth rate, suggesting dilution, whereas the apparent accumulation rate of lipid compounds tends to be highest during times of fastest speleothem growth rate. Such increased accumulation generally corresponds to times of warm (interglacial) climate, suggesting either a greater source of organic materials during interglacial times and/or greater efficiency of compound capture during more rapid calcite growth. Aliphatic lipid compounds include homologous n-alkanoic acids, n-alkanols and methyl n-alkanoates and sterols with concentrations ranging from 0.3 to 7.8 μg g−1, 0.4 to 1.1 μg g−1, 0.5 to 9.6 μg g−1 and 0.1 to 2.7 μg g−1, respectively. Minor amounts of branched methyl n-alkanoates and dimethyl n-alkanedioates are also present. The high concentrations of methyl n-alkanoates are the result of esterification reactions of free fatty acids in alkaline solutions with high pH values associated with the dripping cave waters. The distribution patterns and geochemical parameters and indices indicate that the major sources of the aliphatic lipids involved leaching from higher plants and microbial residues derived from the soil zone above the cave system. The estimated percentage of microbial inputs ranged from 42 to 90% of the total lipids and also showed an increase in accumulation during warm climates. These well-preserved lipid compounds in speleothem calcite could be used as biomarkers for paleoenvironmental study
    corecore