172 research outputs found
Potentiometric Biosensing of Ascorbic Acid, Uric Acid, and Cysteine in Microliter Volumes Using Miniaturized Nanoporous Gold Electrodes
Potentiometric redox sensing is a relatively inexpensive and passive approach to evaluate the overall redox state of complex biological and environmental solutions. The ability to make such measurements in ultra-small volumes using high surface area, nanoporous electrodes is of particular importance as such electrodes can improve the rates of electron transfer and reduce the effects of biofouling on the electrochemical signal. This work focuses on the fabrication of miniaturized nanoporous gold (NPG) electrodes with a high surface area and a small footprint for the potentiometric redox sensing of three biologically relevant redox molecules (ascorbic acid, uric acid, and cysteine) in microliter volumes. The NPG electrodes were inexpensively made by attaching a nanoporous gold leaf prepared by dealloying 12K gold in nitric acid to a modified glass capillary (1.5 mm id) and establishing an electrode connection with copper tape. The surface area of the electrodes was ~1.5 cm2, providing a roughness factor of ~16 relative to the geometric area of 0.09 cm2. Scanning electron microscopy confirmed the nanoporous framework. A linear dependence between the open-circuit potential (OCP) and the logarithm of concentration (e.g., Nernstian-like behavior) was obtained for all three redox molecules in 100 μL buffered solutions. As a first step towards understanding a real system, the response associated with changing the concentration of one redox species in the presence of the other two was examined. These results show that at NPG, the redox potential of a solution containing biologically relevant concentrations of ascorbic acid, uric acid, and cysteine is strongly influenced by ascorbic acid. Such information is important for the measurement of redox potentials in complex biological solutions
SYSTEMATIC PLACEMENT OF THE BEE HUMMINGBIRD (MELLISUGA HELENAE) (AVES: TROCHILIDAE) AND POTENTIAL CONSEQUENCES FOR NOMENCLATURE OF THE MELLISUGINAE
The Near Threatened Cuban endemic, Bee Hummingbird Mellisuga helenae, is iconic for its tiny size—the male is the smallest bird in the world. In this study, one mitochondrial gene (ND2) and introns of two nuclear genes (encoding adenylate kinase and beta-fibrinogen), were sequenced and aligned to homologous sequences from other hummingbird species. With high statistical support, both Maximum Likelihood and Bayesian analyses resolved Bee Hummingbird as sister to Bahama and Inagua Hummingbirds Calliphlox (or Nesophlox) evelynae and lyrura, rather than the congeneric Vervain Hummingbird Mellisuga minima. This finding highlights the need for nomenclatural rearrangement of several hummingbird species in line with the results of recent molecular phylogenies
Particle dynamics of a cartoon dune
The spatio-temporal evolution of a downsized model for a desert dune is
observed experimentally in a narrow water flow channel. A particle tracking
method reveals that the migration speed of the model dune is one order of
magnitude smaller than that of individual grains. In particular, the erosion
rate consists of comparable contributions from creeping (low energy) and
saltating (high energy) particles. The saltation flow rate is slightly larger,
whereas the number of saltating particles is one order of magnitude lower than
that of the creeping ones. The velocity field of the saltating particles is
comparable to the velocity field of the driving fluid. It can be observed that
the spatial profile of the shear stress reaches its maximum value upstream of
the crest, while its minimum lies at the downstream foot of the dune. The
particle tracking method reveals that the deposition of entrained particles
occurs primarily in the region between these two extrema of the shear stress.
Moreover, it is demonstrated that the initial triangular heap evolves to a
steady state with constant mass, shape, velocity, and packing fraction after
one turnover time has elapsed. Within that time the mean distance between
particles initially in contact reaches a value of approximately one quarter of
the dune basis length
Correlative super-resolution fluorescence and electron microscopy using conventional fluorescent proteins in vacuo
Super-resolution light microscopy, correlative light and electron microscopy, and volume electron microscopy are revolutionising the way in which biological samples are examined and understood. Here, we combine these approaches to deliver super-accurate correlation of fluorescent proteins to cellular structures. We show that YFP and GFP have enhanced blinking properties when embedded in acrylic resin and imaged under partial vacuum, enabling in vacuo single molecule localisation microscopy. In conventional section-based correlative microscopy experiments, the specimen must be moved between imaging systems and/or further manipulated for optimal viewing. These steps can introduce undesirable alterations in the specimen, and complicate correlation between imaging modalities. We avoided these issues by using a scanning electron microscope with integrated optical microscope to acquire both localisation and electron microscopy images, which could then be precisely correlated. Collecting data from ultrathin sections also improved the axial resolution and signal-to-noise ratio of the raw localisation microscopy data. Expanding data collection across an array of sections will allow 3-dimensional correlation over unprecedented volumes. The performance of this technique is demonstrated on vaccinia virus (with YFP) and diacylglycerol in cellular membranes (with GFP)
Genetic evidence for SecY translocon-mediated import of two 3 contact-dependent growth inhibition (CDI) toxins
The C-terminal (CT) toxin domains of contact-dependent growth inhibition (CDI) CdiA proteins target Gram-negative bacteria and must breach both the outer and inner membranes of target cells to exert growth inhibitory activity. Here, we examine two CdiA-CT toxins that exploit the bacterial general protein secretion machinery after delivery into the periplasm. A Ser281Phe amino acid substitution in transmembrane segment 7 of SecY, the universally conserved channel-forming subunit of the Sec translocon, decreases the cytotoxicity of the membrane depolarizing orphan10 toxin from enterohemorrhagic Escherichia coli EC869. Target cells expressing secY(S281F) and lacking either PpiD or YfgM, two SecY auxiliary factors, are fully protected from CDI-mediated inhibition either by CdiA-CTo10EC869 or by CdiA-CTGN05224, the latter being an EndoU RNase CdiA toxin from Klebsiella aerogenes GN05224 that has a related cytoplasm entry domain. RNase activity of CdiA-CTGN05224 was reduced in secY(S281F) target cells and absent in secY(S281F) Delta ppiD or secY(S281F) Delta yfgM target cells during competition co-cultures. Importantly, an allele-specific mutation in secY (secY(G313W)) renders DppiD or Delta yfgM target cells specifically resistant to CdiA-CTGN05224 but not to CdiA-CTo10EC869, further suggesting a direct interaction between SecY and the CDI toxins. Our results provide genetic evidence of a unique confluence between the primary cellular export route for unfolded polypeptides and the import pathways of two CDI toxins. IMPORTANCE Many bacterial species interact via direct cell-to-cell contact using CDI systems, which provide a mechanism to inject toxins that inhibit bacterial growth into one another. Here, we find that two CDI toxins, one that depolarizes membranes and another that degrades RNA, exploit the universally conserved SecY translocon machinery used to export proteins for target cell entry. Mutations in genes coding for members of the Sec translocon render cells resistant to these CDI toxins by blocking their movement into and through target cell membranes. This work lays the foundation for understanding how CDI toxins interact with the protein export machinery and has direct relevance to development of new antibiotics that can penetrate bacterial cell envelopes
Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells
Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and scanning electron microscope. We show, for the first time, that GFP is stable and active in resin sections in vacuo. We applied our protocol to study the subcellular localisation of diacylglycerol (DAG), a modulator of membrane morphology and membrane dynamics in nuclear envelope assembly. We show that DAG is localised to the nuclear envelope, nucleoplasmic reticulum and curved tips of the Golgi apparatus. With these developments, we demonstrate that integrated imaging is maturing into a powerful tool for accurate molecular localisation to structure
Observation of Density Segregation inside Migrating Dunes
Spatiotemporal patterns in nature, such as ripples or dunes, formed by a
fluid streaming over a sandy surface show complex behavior despite their simple
forms. Below the surface, the granular structure of the sand particles is
subject to self-organization processes, exhibiting such phenomena as reverse
grading when larger particles are found on top of smaller ones. Here we report
results of an experimental investigation with downscaled model dunes revealing
that, if the particles differ not in size but in density, the heavier
particles, surprisingly, accumulate in the central core close to the top of the
dune. This finding contributes to the understanding of sedimentary structures
found in nature and might be helpful to improve existing dating methods for
desert dunes.Comment: 4 pages, 5 figures, submitted to Physical Review E Rapid
Communications, in prin
Femtosecond laser preparation of resin embedded samples for correlative microscopy workflows in life sciences
Correlative multimodal imaging is a useful approach to investigate complex structural relations in life sciences across multiple scales. For these experiments, sample preparation workflows that are compatible with multiple imaging techniques must be established. In one such implementation, a fluorescently labeled region of interest in a biological soft tissue sample can be imaged with light microscopy before staining the specimen with heavy metals, enabling follow-up higher resolution structural imaging at the targeted location, bringing context where it is required. Alternatively, or in addition to fluorescence imaging, other microscopy methods, such as synchrotron x-ray computed tomography with propagation-based phase contrast or serial blockface scanning electron microscopy, might also be applied. When combining imaging techniques across scales, it is common that a volumetric region of interest (ROI) needs to be carved from the total sample volume before high resolution imaging with a subsequent technique can be performed. In these situations, the overall success of the correlative workflow depends on the precise targeting of the ROI and the trimming of the sample down to a suitable dimension and geometry for downstream imaging. Here, we showcase the utility of a femtosecond laser (fs laser) device to prepare microscopic samples (1) of an optimized geometry for synchrotron x-ray tomography as well as (2) for volume electron microscopy applications and compatible with correlative multimodal imaging workflows that link both imaging modalities
Additive effect of cerebral atrophy on cognition in dementia-free elderly with cerebrovascular disease
Objective: To explore the additive effect of neurodegenerative diseases, measured by atrophy, on neurocognitive function in Asian dementia-free elderly with cerebrovascular disease (CeVD). Methods: The present study employed a cross-sectional design and was conducted between 2010 and 2015 among community-dwelling elderly participants recruited into the study. Eligible participants were evaluated with an extensive neuropsychological battery and neuroimaging. The weighted CeVD burden scale comprising markers of both small- and large-vessel diseases was applied, with a score of ≥2, indicating significant CeVD burden. Cortical atrophy (CA) and medial temporal atrophy (MTA) were graded using the global cortical atrophy scale and Schelten's scale, respectively. Global and domain-specific (attention, executive function, language, visuomotor speed, visuoconstruction, visual memory, and verbal memory) neurocognitive performance was measured using a locally validated neuropsychological battery (Vascular Dementia Battery, VDB). Results: A total of 819 dementia-free participants were included in the analysis. Among none-mild CeVD subjects, there was no significant difference in the global cognitive performance across atrophy groups (no atrophy, CA, and CA+MTA). However, in moderate-severe CeVD subjects, CA+MTA showed significantly worse global cognitive performance compared with those with CA alone (mean difference=-0.35, 95% CI -0.60 to -0.11, p=0.002) and those without atrophy (mean difference=-0.46, 95% CI -0.74 to -0.19, p<0.001, p<0.001). In domain-specific cognitive performance, subjects with CA+MTA performed worse than other groups in visual memory (p=0.005), executive function (p=0.001) and visuomotor speed (p<0.001) in moderate-severe CeVD but not in none-mild CeVD. Conclusions and relevance: Atrophy and moderate-severe CeVD burden showed an additive effect on global and domain-specific cognitive performance. This study highlights the importance of investigating the mechanisms of clinico-pathological interactions between neurodegenerative processes and vascular damage, particularly in the pre-dementia stage
- …