774 research outputs found

    Treatment regimens and outcomes in severe and moderate haemophilia A in the UK: The THUNDER study

    Get PDF
    Introduction: The THUNDER study provides an analysis of treatment patterns and outcomes in UK patients with severe or moderate haemophilia A (SHA/MHA) in 2015. Methods: Patients with SHA or MHA registered with the UK National Haemophilia Database (NHD) were segregated by severity, inhibitor status and age. Haemophilia joint health score (HJHS) was derived from NHD records and treatment regimen and annualized bleed/joint‐bleed rate (ABR/AJBR) from Haemtrack (HT) in HT‐compliant patients. Results: We report 1810 patients with SHA and 864 with MHA. Prophylaxis was used in 94.9% (n = 130/137) of HT‐compliant children <12 years with SHA, falling to 74.1% (n = 123/166) aged ≄40 years. Median ABR increased with age (1.0, IQR 0.0‐5.0, <12 years; 3.0 IQR, 1.0‐8.0, ≄40 years). Inhibitors were present in 159 (8.8%) SHA and 34 (3.9%) MHA. Median ABR increased from 2.0 (<12 years) to 21.(≄40 years) in SHA inhibitor patients using prophylaxis. Prophylaxis was used by 68.8% of HT‐compliant MHA patients (n = 106) (median FVIII baseline 0.01 IU/mL) associated with a median (IQR) ABR of 3.0 (1.0‐7.0). Median HJHS (n = 453) increased with age in SHA and MHA. Median (IQR) HJHS was higher in SHA inhibitor (17.0, 0.0‐64.5) than non‐ or past inhibitor patients (7.0, 0.0‐23.0). Conclusions: Increasing ABR with age persists despite current prophylaxis regimens.SHA and MHA had similar ABR/AJBR and HJHS, leading to a suspicion that a subgroup of MHA may be relatively undertreated. More intensive prophylaxis may improve outcomes, but this requires further study

    Higgs-Boson Production Induced by Bottom Quarks

    Full text link
    Bottom quark-induced processes are responsible for a large fraction of the LHC discovery potential, in particular for supersymmetric Higgs bosons. Recently, the discrepancy between exclusive and inclusive Higgs boson production rates has been linked to the choice of an appropriate bottom factorization scale. We investigate the process kinematics at hadron colliders and show that it leads to a considerable decrease in the bottom factorization scale. This effect is the missing piece needed to understand the corresponding higher order results. Our results hold generally for charged and for neutral Higgs boson production at the LHC as well as at the Tevatron. The situation is different for single top quark production, where we find no sizeable suppression of the factorization scale. Turning the argument around, we can specify how large the collinear logarithms are, which can be resummed using the bottom parton picture.Comment: 18 page

    Charged Higgs Boson Production in Bottom-Gluon Fusion

    Full text link
    We compute the complete next-to-leading order SUSY-QCD corrections for the associated production of a charged Higgs boson with a top quark via bottom-gluon fusion. We investigate the applicability of the bottom parton description in detail. The higher order corrections can be split into real and virtual corrections for a general two Higgs doublet model and into additional massive supersymmetric loop contributions. We find that the perturbative behavior is well under control. The supersymmetric contributions consist of the universal bottom Yukawa coupling corrections and non-factorizable diagrams. Over most of the relevant supersymmetric parameter space the Yukawa coupling corrections are sizeable, while the remaining supersymmetric loop contributions are negligible.Comment: 18 pages, v2: some discussions added, v3: published versio

    Louse (Insecta : Phthiraptera) mitochondrial 12S rRNA secondary structure is highly variable

    Get PDF
    Lice are ectoparasitic insects hosted by birds and mammals. Mitochondrial 12S rRNA sequences obtained from lice show considerable length variation and are very difficult to align. We show that the louse 12S rRNA domain III secondary structure displays considerable variation compared to other insects, in both the shape and number of stems and loops. Phylogenetic trees constructed from tree edit distances between louse 12S rRNA structures do not closely resemble trees constructed from sequence data, suggesting that at least some of this structural variation has arisen independently in different louse lineages. Taken together with previous work on mitochondrial gene order and elevated rates of substitution in louse mitochondrial sequences, the structural variation in louse 12S rRNA confirms the highly distinctive nature of molecular evolution in these insects

    Implementation of a Deutsch-like quantum algorithm utilizing entanglement at the two-qubit level, on an NMR quantum information processor

    Get PDF
    We describe the experimental implementation of a recently proposed quantum algorithm involving quantum entanglement at the level of two qubits using NMR. The algorithm solves a generalisation of the Deutsch problem and distinguishes between even and odd functions using fewer function calls than is possible classically. The manipulation of entangled states of the two qubits is essential here, unlike the Deutsch-Jozsa algorithm and the Grover's search algorithm for two bits.Comment: 4 pages, two eps figure

    Generalized parton distributions and Deeply Virtual Compton Scattering in Color Glass Condensate model

    Full text link
    Within the framework of the Color Glass Condensate model, we evaluate quark and gluon Generalized Parton Distributions (GPDs) and the cross section of Deeply Virtual Compton Scattering (DVCS) in the small-xBx_{B} region. We demonstrate that the DVCS cross section becomes independent of energy in the limit of very small xBx_{B}, which clearly indicates saturation of the DVCS cross section. Our predictions for the GPDs and the DVCS cross section at high-energies can be tested at the future Electron-Ion Collider and in ultra-peripheral nucleus-nucleus collisions at the LHC.Comment: 20 pages, 8 Figure

    Lattice theory of trapping reactions with mobile species

    Full text link
    We present a stochastic lattice theory describing the kinetic behavior of trapping reactions A+B→BA + B \to B, in which both the AA and BB particles perform an independent stochastic motion on a regular hypercubic lattice. Upon an encounter of an AA particle with any of the BB particles, AA is annihilated with a finite probability; finite reaction rate is taken into account by introducing a set of two-state random variables - "gates", imposed on each BB particle, such that an open (closed) gate corresponds to a reactive (passive) state. We evaluate here a formal expression describing the time evolution of the AA particle survival probability, which generalizes our previous results. We prove that for quite a general class of random motion of the species involved in the reaction process, for infinite or finite number of traps, and for any time tt, the AA particle survival probability is always larger in case when AA stays immobile, than in situations when it moves.Comment: 12 pages, appearing in PR

    Holonomic quantum gates: A semiconductor-based implementation

    Get PDF
    We propose an implementation of holonomic (geometrical) quantum gates by means of semiconductor nanostructures. Our quantum hardware consists of semiconductor macroatoms driven by sequences of ultrafast laser pulses ({\it all optical control}). Our logical bits are Coulomb-correlated electron-hole pairs (excitons) in a four-level scheme selectively addressed by laser pulses with different polarization. A universal set of single and two-qubit gates is generated by adiabatic change of the Rabi frequencies of the lasers and by exploiting the dipole coupling between excitons.Comment: 10 Pages LaTeX, 10 Figures include

    Segmentation of whole cells and cell nuclei from 3-D optical microscope images using dynamic programming

    Get PDF
    金æČąć€§ć­ŠćŒ»è–Źäżć„ç ”ç©¶ćŸŸćŒ»ć­Šçł»Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection. © 2006 IEEE

    Saturn's icy satellites and rings investigated by Cassini - VIMS. III. Radial compositional variability

    Full text link
    In the last few years Cassini-VIMS, the Visible and Infared Mapping Spectrometer, returned to us a comprehensive view of the Saturn's icy satellites and rings. After having analyzed the satellites' spectral properties (Filacchione et al. (2007a)) and their distribution across the satellites' hemispheres (Filacchione et al. (2010)), we proceed in this paper to investigate the radial variability of icy satellites (principal and minor) and main rings average spectral properties. This analysis is done by using 2,264 disk-integrated observations of the satellites and a 12x700 pixels-wide rings radial mosaic acquired with a spatial resolution of about 125 km/pixel. The comparative analysis of these data allows us to retrieve the amount of both water ice and red contaminant materials distributed across Saturn's system and the typical surface regolith grain sizes. These measurements highlight very striking differences in the population here analyzed, which vary from the almost uncontaminated and water ice-rich surfaces of Enceladus and Calypso to the metal/organic-rich and red surfaces of Iapetus' leading hemisphere and Phoebe. Rings spectra appear more red than the icy satellites in the visible range but show more intense 1.5-2.0 micron band depths. The correlations among spectral slopes, band depths, visual albedo and phase permit us to cluster the saturnian population in different spectral classes which are detected not only among the principal satellites and rings but among co-orbital minor moons as well. Finally, we have applied Hapke's theory to retrieve the best spectral fits to Saturn's inner regular satellites using the same methodology applied previously for Rhea data discussed in Ciarniello et al. (2011).Comment: 44 pages, 27 figures, 7 tables. Submitted to Icaru
    • 

    corecore