953 research outputs found

    Keeping the collectivity in mind?

    Get PDF
    The key question in this three way debate is the role of the collectivity and of agency. Collins and Shrager debate whether cognitive psychology has, like the sociology of knowledge, always taken the mind to extend beyond the individual. They agree that irrespective of the history, socialization is key to understanding the mind and that this is compatible with Clark’s position; the novelty in Clark’s “extended mind” position appears to be the role of the material rather than the role of other minds. Collins and Clark debate the relationship between self, agency, and the human collectivity. Collins argues that the Clark’s extended mind fails to stress the asymmetry of the relationship between the self and its material “scaffolding.” Clark accepts that there is asymmetry but that an asymmetrical ensemble is sufficient to explain the self. Collins says that we know too little about the material world to pursue such a model to the exclusion of other approaches including that both the collectivity and language have agency. The collectivity must be kept in mind! (Though what follows is a robust exchange of views it is also a cooperative effort, authors communicating “backstage” with each other to try to make the disagreements as clear and to the point as possible.

    Problem Formulation and Fairness

    Full text link
    Formulating data science problems is an uncertain and difficult process. It requires various forms of discretionary work to translate high-level objectives or strategic goals into tractable problems, necessitating, among other things, the identification of appropriate target variables and proxies. While these choices are rarely self-evident, normative assessments of data science projects often take them for granted, even though different translations can raise profoundly different ethical concerns. Whether we consider a data science project fair often has as much to do with the formulation of the problem as any property of the resulting model. Building on six months of ethnographic fieldwork with a corporate data science team---and channeling ideas from sociology and history of science, critical data studies, and early writing on knowledge discovery in databases---we describe the complex set of actors and activities involved in problem formulation. Our research demonstrates that the specification and operationalization of the problem are always negotiated and elastic, and rarely worked out with explicit normative considerations in mind. In so doing, we show that careful accounts of everyday data science work can help us better understand how and why data science problems are posed in certain ways---and why specific formulations prevail in practice, even in the face of what might seem like normatively preferable alternatives. We conclude by discussing the implications of our findings, arguing that effective normative interventions will require attending to the practical work of problem formulation.Comment: Conference on Fairness, Accountability, and Transparency (FAT* '19), January 29-31, 2019, Atlanta, GA, US

    Measuring Parton Densities in the Pomeron

    Get PDF
    We present a program to measure the parton densities in the pomeron using diffractive deep inelastic scattering and diffractive photoproduction, and to test the resulting parton densities by applying them to other processes such as the diffractive production of jets in hadron-hadron collisions. Since QCD factorization has been predicted NOT to apply to hard diffractive scattering, this program of fitting and using parton densities might be expected to fail. Its success or failure will provide useful information on the space-time structure of the pomeron.Comment: Contains revisions based on Phys. Rev. D referee comments. RevTeX version 3, epsf, 31 pages. Uuencoded compressed postscript figures appended. Uncompressed postscript files available at ftp://ftp.phys.psu.edu/pub/preprint/psuth136

    Emission Line Galaxies in the STIS Parallel Survey I: Observations and Data Analysis

    Full text link
    In the first three years of operation STIS obtained slitless spectra of approximately 2500 fields in parallel to prime HST observations as part of the STIS Parallel Survey (SPS). The archive contains almost 300 fields at high galactic latitude (|b|>30) with spectroscopic exposure times greater than 3000 seconds. This sample contains 220 fields (excluding special regions and requiring a consistent grating angle) observed between 6 June 1997 and 21 September 2000, with a total survey area of about 160 square arcminutes. At this depth, the SPS detects an average of one emission line galaxy per three fields. We present the analysis of these data, and the identification of 131 low to intermediate redshift galaxies detected by optical emission lines. The sample contains 78 objects with emission lines that we infer to be redshifted [OII]3727 emission at 0.43<z<1.7. The comoving number density of these objects is comparable to that of H-alpha emitting galaxies in the NICMOS parallel observations. One quasar and three probable Seyfert galaxies are detected. Many of the emission-line objects show morphologies suggestive of mergers or interactions. The reduced data are available upon request from the authors.Comment: 58 preprint pages, including 26 figures; accepted for publication in ApJ

    Scaling of the B and D meson spectrum in lattice QCD

    Get PDF
    We give results for the BB and the DD meson spectrum using NRQCD on the lattice in the quenched approximation. The masses of radially and orbitally excited states are calculated as well as SS-wave hyperfine and PP-wave fine structure. Radially excited PP-states are observed for the first time. Radial and orbital excitation energies match well to experiment, as does the strange-non-strange SS-wave splitting. We compare the light and heavy quark mass dependence of various splittings to experiment. Our BB-results cover a range in lattice spacings of more than a factor of two. Our DD-results are from a single lattice spacing and we compare them to numbers in the literature from finer lattices using other methods. We see no significant dependence of physical results on the lattice spacing. PACS: 11.15.Ha 12.38.Gc 14.40.Lb 14.40.NdComment: 78 pages, 29 tables, 30 figures Revised version. Minor corrections to spelling and wordin

    A Pair of Compact Red Galaxies at Redshift 2.38, Immersed in a 100 kpc Scale Ly-alpha Nebula

    Full text link
    We present Hubble Space Telescope (HST) and ground-based observations of a pair of galaxies at redshift 2.38, which are collectively known as 2142-4420 B1 (Francis et al. 1996). The two galaxies are both luminous extremely red objects (EROs), separated by 0.8 arcsec. They are embedded within a 100 kpc scale diffuse Ly-alpha nebula (or blob) of luminosity ~10^44 erg/s. The radial profiles and colors of both red objects are most naturally explained if they are young elliptical galaxies: the most distant yet found. It is not, however, possible to rule out a model in which they are abnormally compact, extremely dusty starbursting disk galaxies. If they are elliptical galaxies, their stellar populations have inferred masses of ~10^11 solar masses and ages of ~7x10^8 years. Both galaxies have color gradients: their centers are significantly bluer than their outer regions. The surface brightness of both galaxies is roughly an order of magnitude greater than would be predicted by the Kormendy relation. A chain of diffuse star formation extending 1 arcsec from the galaxies may be evidence that they are interacting or merging. The Ly-alpha nebula surrounding the galaxies shows apparent velocity substructure of amplitude ~ 700 km/s. We propose that the Ly-alpha emission from this nebula may be produced by fast shocks, powered either by a galactic superwind or by the release of gravitational potential energy.Comment: 33 pages, 9 figures, ApJ in press (to appear in Jun 10 issue

    Spatio-temporal evolution of global surface temperature distributions

    Get PDF
    Climate is known for being characterised by strong non-linearity and chaotic behaviour. Nevertheless, few studies in climate science adopt statistical methods specifically designed for non-stationary or non-linear systems. Here we show how the use of statistical methods from Information Theory can describe the non-stationary behaviour of climate fields, unveiling spatial and temporal patterns that may otherwise be difficult to recognize. We study the maximum temperature at two meters above ground using the NCEP CDAS1 daily reanalysis data, with a spatial resolution of 2.5 by 2.5 degree and covering the time period from 1 January 1948 to 30 November 2018. The spatial and temporal evolution of the temperature time series are retrieved using the Fisher Information Measure, which quantifies the information in a signal, and the Shannon Entropy Power, which is a measure of its uncertainty -- or unpredictability. The results describe the temporal behaviour of the analysed variable. Our findings suggest that tropical and temperate zones are now characterized by higher levels of entropy. Finally, Fisher-Shannon Complexity is introduced and applied to study the evolution of the daily maximum surface temperature distributions.Comment: 7 pages, 4 figure

    Comparative chromosome painting discloses homologous Segments in distantly related mammals

    Get PDF
    Comparative chromosome painting, termed ZOO-FISH, using DNA libraries from flow sorted human chromosomes 1,16,17 and X, and mouse chromosome 11 discloses the presence of syntenic groups in distantly related mammalian Orders ranging from primates (Homo sapiens), rodents (Mus musculus), even-toed ungulates (Muntiacus muntjak vaginalis and Muntiacus reevesi) and whales (Balaenoptera physalus). These mammalian Orders have evolved separately for 55-80 million years (Myr). We conclude that ZOO-FISH can be used to generate comparative chromosome maps of a large number of mammalian species
    corecore