17 research outputs found

    Interleaving and lock-step semantics for analysis and verification of GPU kernels

    No full text
    Graphics Processing Units (GPUs) from leading vendors employ predicated (or guarded) execution to eliminate branching and increase performance. Similarly, a recent GPU verification technique uses predication to reduce verification of GPU kernels (the massively parallel programs that run on GPUs) to verification of a sequential program. Prior work on the formal semantics of lock-step predicated execution for kernels focused on structured programs, where control is organised using if- and while-statements. We provide lock-step execution semantics for GPU kernels that are represented by arbitrary reducible control flow graphs. We present a traditional interleaving semantics and a novel lock-step semantics based on predication, and show that for terminating kernels either both semantics compute identical results or both behave erroneously. The method allows reducing GPU kernel verification to the verification of a sequential, lock-step program to be applied to GPU kernels with arbitrary reducible control flow. We have implemented the method in the GPUVerify tool, and present an evaluation using a set of 163 open source and commercial GPU kernels. Among these kernels, 42 exhibit unstructured control flow which our novel lock-step predication technique can handle fully automatically. This generality comes at a modest price: verification across our benchmark set was on average 2.25 times slower than using an existing approach that specifically targets structured kernels

    Engineering a static verification tool for GPU kernels

    Get PDF
    We report on practical experiences over the last 2.5 years related to the engineering of GPUVerify, a static verification tool for OpenCL and CUDA GPU kernels, plotting the progress of GPUVerify from a prototype to a fully functional and relatively efficient analysis tool. Our hope is that this experience report will serve the verification community by helping to inform future tooling efforts. © 2014 Springer International Publishing

    CLTestCheck: Measuring Test Effectiveness for GPU Kernels

    Get PDF

    GPUVerify: A Verifier for GPU Kernels

    Get PDF
    We present a technique for verifying race- and divergence-freedom of GPU kernels that are written in mainstream ker-nel programming languages such as OpenCL and CUDA. Our approach is founded on a novel formal operational se-mantics for GPU programming termed synchronous, delayed visibility (SDV) semantics. The SDV semantics provides a precise definition of barrier divergence in GPU kernels and allows kernel verification to be reduced to analysis of a sequential program, thereby completely avoiding the need to reason about thread interleavings, and allowing existing modular techniques for program verification to be leveraged. We describe an efficient encoding for data race detection and propose a method for automatically inferring loop invari-ants required for verification. We have implemented these techniques as a practical verification tool, GPUVerify, which can be applied directly to OpenCL and CUDA source code. We evaluate GPUVerify with respect to a set of 163 kernels drawn from public and commercial sources. Our evaluation demonstrates that GPUVerify is capable of efficient, auto-matic verification of a large number of real-world kernels

    Plants as Indicators of Climate in Northeast Mexico

    No full text
    Abstract. GPU based computing has made significant strides in recent years. Unfortunately, GPU program optimizations can introduce subtle concurrency errors, and so incisive formal bug-hunting methods are essential. This paper presents a new formal bug-hunting method for GPU programs that combine barriers and atomics. We present an algorithm called conflict-directed delay-bounded scheduling algorithm (CD) that exploits the occurrence of conflicts among atomic synchronization commands to trigger the generation of alternate schedules; these alternate schedules are executed in a delay-bounded manner. We formally describe CD, and present two correctness checking methods, one based on final state comparison, and the other on user assertions. We evaluate our implementation on realistic GPU benchmarks, with encouraging results.
    corecore