145 research outputs found
Black Male Student-Athletes and Racial Inequities in NCAA Division I College Sports
The purpose of this report is to make transparent racial inequities in NCAA Division I college sports. Specifically, the authors offer a four-year analysis of Black men's representation on football and basketball teams versus their representation in the undergraduate student body on each campus. The report concludes with recommendations for the NCAA and commissioners of the six major sports conferences, college and university leaders, coaches and athletics directors, journalists, and Black male student-athletes and their families
Management of high-risk corneal grafts
MACMILLAN BUILDING,4 CRINAN ST, LONDON,
ENGLAND, N1 9X
Systemic AAV vectors for widespread and targeted gene delivery in rodents
We recently developed adeno-associated virus (AAV) capsids to facilitate efficient and noninvasive gene transfer to the central and peripheral nervous systems. However, a detailed protocol for generating and systemically delivering novel AAV variants was not previously available. In this protocol, we describe how to produce and intravenously administer AAVs to adult mice to specifically label and/or genetically manipulate cells in the nervous system and organs, including the heart. The procedure comprises three separate stages: AAV production, intravenous delivery, and evaluation of transgene expression. The protocol spans 8 d, excluding the time required to assess gene expression, and can be readily adopted by researchers with basic molecular biology, cell culture, and animal work experience. We provide guidelines for experimental design and choice of the capsid, cargo, and viral dose appropriate for the experimental aims. The procedures outlined here are adaptable to diverse biomedical applications, from anatomical and functional mapping to gene expression, silencing, and editing
Relative Burden of Large CNVs on a Range of Neurodevelopmental Phenotypes
While numerous studies have implicated copy number variants (CNVs) in a range of neurological phenotypes, the impact relative to disease severity has been difficult to ascertain due to small sample sizes, lack of phenotypic details, and heterogeneity in platforms used for discovery. Using a customized microarray enriched for genomic hotspots, we assayed for large CNVs among 1,227 individuals with various neurological deficits including dyslexia (376), sporadic autism (350), and intellectual disability (ID) (501), as well as 337 controls. We show that the frequency of large CNVs (>1 Mbp) is significantly greater for IDâassociated phenotypes compared to autism (pâ=â9.58Ă10â11, odds ratioâ=â4.59), dyslexia (pâ=â3.81Ă10â18, odds ratioâ=â14.45), or controls (pâ=â2.75Ă10â17, odds ratioâ=â13.71). There is a striking difference in the frequency of rare CNVs (>50 kbp) in autism (10%, pâ=â2.4Ă10â6, odds ratioâ=â6) or ID (16%, pâ=â3.55Ă10â12, odds ratioâ=â10) compared to dyslexia (2%) with essentially no difference in large CNV burden among dyslexia patients compared to controls. Rare CNVs were more likely to arise de novo (64%) in ID when compared to autism (40%) or dyslexia (0%). We observed a significantly increased large CNV burden in individuals with ID and multiple congenital anomalies (MCA) compared to ID alone (pâ=â0.001, odds ratioâ=â2.54). Our data suggest that large CNV burden positively correlates with the severity of childhood disability: ID with MCA being most severely affected and dyslexics being indistinguishable from controls. When autism without ID was considered separately, the increase in CNV burden was modest compared to controls (pâ=â0.07, odds ratioâ=â2.33)
Detection of astrophysical tau neutrino candidates in IceCube
High-energy tau neutrinos are rarely produced in atmospheric cosmic-ray showers or at cosmic particle accelerators, but are expected to emerge during neutrino propagation over cosmic distances due to flavor mixing. When high energy tau neutrinos interact inside the IceCube detector, two spatially separated energy depositions may be resolved, the first from the charged current interaction and the second from the tau lepton decay. We report a novel analysis of 7.5 years of IceCube data that identifies two candidate tau neutrinos among the 60 âHigh-Energy Starting Eventsâ (HESE) collected during that period. The HESE sample offers high purity, all-sky sensitivity, and distinct observational signatures for each neutrino flavor, enabling a new measurement of the flavor composition. The measured astrophysical neutrino flavor composition is consistent with expectations, and an astrophysical tau neutrino flux is indicated at 2.8 significance
Understanding the retinal basis of vision across species
The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision
Measurement of Astrophysical Tau Neutrinos in IceCube's High-Energy Starting Events
We present the results of a search for astrophysical tau neutrinos in 7.5
years of IceCube's high-energy starting event data. At high energies, two
energy depositions stemming from the tau neutrino charged-current interaction
and subsequent tau lepton decay may be resolved. We report the first detection
of two such events, with probabilities of and of being
produced by astrophysical tau neutrinos. The resultant astrophysical neutrino
flavor measurement is consistent with expectations, disfavoring a
no-astrophysical tau neutrino flux scenario with 2.8 significance.Comment: This article is supported by a long-form paper that discusses the
high-energy starting event selection titled: "The IceCube high-energy
starting event sample: Description and flux characterization with 7.5 years
of data.
A search for time-dependent astrophysical neutrino emission with IceCube data from 2012 to 2017
High-energy neutrinos are unique messengers of the high-energy universe,
tracing the processes of cosmic-ray acceleration. This paper presents analyses
focusing on time-dependent neutrino point-source searches. A scan of the whole
sky, making no prior assumption about source candidates, is performed, looking
for a space and time clustering of high-energy neutrinos in data collected by
the IceCube Neutrino Observatory between 2012 and 2017. No statistically
significant evidence for a time-dependent neutrino signal is found with this
search during this period since all results are consistent with the background
expectation. Within this study period, the blazar 3C 279, showed strong
variability, inducing a very prominent gamma-ray flare observed in 2015 June.
This event motivated a dedicated study of the blazar, which consists of
searching for a time-dependent neutrino signal correlated with the gamma-ray
emission. No evidence for a time-dependent signal is found. Hence, an upper
limit on the neutrino fluence is derived, allowing us to constrain a hadronic
emission model
Dendritic cells in cancer immunology and immunotherapy
Dendritic cells (DCs) are a diverse group of specialized antigen-presenting cells with key roles in the initiation and regulation of innate and adaptive immune responses. As such, there is currently much interest in modulating DC function to improve cancer immunotherapy. Many strategies have been developed to target DCs in cancer, such as the administration of antigens with immunomodulators that mobilize and activate endogenous DCs, as well as the generation of DC-based vaccines. A better understanding of the diversity and functions of DC subsets and of how these are shaped by the tumour microenvironment could lead to improved therapies for cancer. Here we will outline how different DC subsets influence immunity and tolerance in cancer settings and discuss the implications for both established cancer treatments and novel immunotherapy strategies.S.K.W. is supported by a European Molecular Biology Organization Long- Term Fellowship (grant ALTF 438â 2016) and a CNICâInternational Postdoctoral Program Fellowship (grant 17230â2016). F.J.C. is the recipient of a PhD âLa Caixaâ fellowship. Work in the D.S. laboratory is funded by the CNIC, by the European Research Council (ERC Consolidator Grant 2016 725091), by the European Commission (635122-PROCROP H2020), by the Ministerio de Ciencia, InnovaciĂłn e Universidades (MCNU), Agencia Estatal de InvestigaciĂłn and Fondo Europeo de Desarrollo Regional (FEDER) (SAF2016-79040-R), by the Comunidad de Madrid (B2017/BMD-3733 Immunothercan- CM), by FIS- Instituto de Salud Carlos III, MCNU and FEDER (RD16/0015/0018-REEM), by Acteria Foundation, by Atresmedia (Constantes y Vitales prize) and by FundaciĂł La MaratĂł de TV3 (201723). The CNIC is supported by the Instituto de Salud Carlos III, the MCNU and the Pro CNIC Foundation, and is a Severo Ochoa Centre of Excellence (SEV-2015-0505).S
LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories
We present a high-energy neutrino event generator, called LeptonInjector,
alongside an event weighter, called LeptonWeighter. Both are designed for
large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event
generator allows for quick and flexible simulation of neutrino events within
and around the detector volume, and implements the leading Standard Model
neutrino interaction processes relevant for neutrino observatories:
neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation.
In this paper, we discuss the event generation algorithm, the weighting
algorithm, and the main functions of the publicly available code, with
examples.Comment: 28 pages, 10 figures, 3 table
- âŠ