132 research outputs found

    Protection of early phase hepatic ischemia-reperfusion injury by cholinergic agonists

    Get PDF
    BACKGROUND: Cytokine production is critical in ischemia/reperfusion (IR) injury. Acetylcholine binds to macrophages and inhibits cytokine synthesis, through the cholinergic anti-inflammatory pathway. This study examined the role of the cholinergic pathway in cytokine production and hepatic IR- injury. METHODS: Adult male mice underwent 90-min of partial liver ischemia followed by reperfusion. The AChR agonists (1,1-dimethyl-4-phenyl-L-pioperazinium-iodide [DMPP], and nicotine) or saline-vehicle were administered i.p. before ischemia. Plasma cytokine tumor necrosis factor (TNF)-α, macrophage inflammatory protein-2, and Interleukin-6 were measured. Liver injury was assessed by plasma alanine transaminase (ALT) and liver histopathology. RESULTS: A reperfusion time-dependent hepatocellular injury occurred as was indicated by increased plasma-ALT and histopathology. The injury was associated with marked elevation of plasma cytokines/chemokines. Pre-ischemic treatment of mice with DMPP or nicotine significantly decreased plasma-ALT and cytokines after 3 h of reperfusion. After 6 h of reperfusion, the protective effect of DMPP decreased and reached a negligible level by 24 h of reperfusion, despite significantly low levels of plasma cytokines. Histopathology showed markedly diminished hepatocellular injury in DMPP- and nicotine-pretreated mice during the early-phase of hepatic-IR, which reached a level comparable to saline-treated mice at late-phase of IR. CONCLUSION: Pharmacological modulation of the cholinergic pathway provides a means to modulate cytokine production and to delay IR-induced heaptocellular injury

    Isoflurane Preconditioning at Clinically Relevant Doses Induce Protective Effects of Heme Oxygenase-1 on Hepatic Ischemia Reperfusion in Rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of heme oxygenase-1 (HO-1) has been proved to reduce damages to the liver in ischemia reperfusion injury. The objective of present study was to determine whether clinic relevant doses of isoflurane treatment could be sufficient to activate HO-1 inducing, which confers protective effect against hepatic ischemia-reperfusion injury.</p> <p>Methods</p> <p>The hepatic artery and portal vein to the left and the median liver lobes of forty male Sprague-Dawley rats were occluded for 60 minutes. Reperfusion was allowed for 4 hours before the animal subjects were sacrificed. Six groups (n = 12) were included in the study. A negative control group received sham operation and positive control group a standard ischemia-reperfusion regimen. The third group was pretreated with isoflurane prior to the ischemia-reperfusion. The fourth group received an HO-1 inhibitor zinc protoporphyrin (Znpp) prior to the isoflurane pretreatment and the ischemia-reperfusion. The fifth group received Znpp alone before ischemia-reperfusion procedure, and the sixth group was administrated with a HO-1 inducer hemin prior to IR. HO-1 in the liver was measured using an enzymatic activity assay, a Western blot analysis, as well as immunohistochemical method. Extent of liver damage was estimated by determination of the serum transaminases, liver lipid peroxidation and hepatic histology. Infiltration of the liver by neutrophils was measured using a myeloperoxidase activity assay. TNFα mRNA in the liver was measured using RT-PCR.</p> <p>Results</p> <p>Isoflurane pretreatment significantly attenuated the hepatic injuries and inflammatory responses caused by the ischemia reperfusion. Selectively inhibiting HO-1 with ZnPP completed blocked the protective effects of isoflurane. Inducing HO-1 with hemin alone produced protective effects similar in magnitude to that of isoflurane.</p> <p>Conclusions</p> <p>Clinic relevant doses of isoflurane attenuate ischemia reperfusion injury in rats by increasing the HO-1 expression and activity.</p

    Oxidation of HMGB1 Causes Attenuation of Its Pro-Inflammatory Activity and Occurs during Liver Ischemia and Reperfusion

    Get PDF
    High mobility group box 1 (HMGB1) is a nuclear transcription factor. Once HMGB1 is released by damaged cells or activated immune cells, it acts as danger molecule and triggers the inflammatory signaling cascade. Currently, evidence is accumulating that posttranslational modifications such as oxidation may modulate the pro-inflammatory potential of danger signals. We hypothesized that oxidation of HMGB1 may reduce its pro-inflammatory potential and could take place during prolonged ischemia and upon reperfusion

    Changes in Inflammatory Response after Endovascular Treatment for Type B Aortic Dissection

    Get PDF
    This present study aims to investigate the changes in the inflammatory markers after elective endovascular treatment of Type B aortic dissection with aneurysm, as related to different anatomical features of the dissection flap in the paravisceral perfusion. Consecutive patients with type B aortic dissections with elective endovascular stent graft repair were recruited and categorized into different groups. Serial plasma levels of cytokines (Interleukin-1β, -6, -8, -10, TNF-α), chemokines (MCP-1), and serum creatinine were monitored at pre-, peri- and post-operative stages. The length of stent graft employed in each surgery was retrieved and correlated with the change of all studied biochemical parameters. A control group of aortic dissected patients with conventional medication management was recruited for comparing the baseline biochemical parameters. In total, 22 endovascular treated and 16 aortic dissected patients with surveillance were recruited. The endovascular treated patients had comparable baseline levels as the non-surgical patients. There was no immediate or thirty day-mortality, and none of the surgical patients developed post-operative mesenteric ischaemia or clinically significant renal impairment. All surgical patients had detectable pro-inflammatory mediators, but none of the them showed any statistical significant surge in the peri-operative period except IL-1β and IL-6. Similar results were obtained when categorized into different groups. IL-1β and IL-6 showed maximal levels within hours of the endovascular procedure (range, 3.93 to 27.3 higher than baseline; p = 0.001), but returned to baseline 1 day post-operatively. The change of IL-1β and IL-6 at the stent graft deployment was statistically greater in longer stent graft (p>0.05). No significant changes were observed in the serum creatinine levels. In conclusion, elective endovascular repair of type B aortic dissection associated with insignificant changes in inflammatory mediators and creatinine. All levels fell toward basal levels post-operatively suggesting that thoracic endovascular aortic repair is rather less aggressive with insignificant inflammatory modulation

    Carbon monoxide-Releasing Molecule-2 (CORM-2) attenuates acute hepatic ischemia reperfusion injury in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatic ischemia-reperfusion injury (I/Ri) is a serious complication occurring during liver surgery that may lead to liver failure. Hepatic I/Ri induces formation of reactive oxygen species, hepatocyte apoptosis, and release of pro-inflammatory cytokines, which together causes liver damage and organ dysfunction. A potential strategy to alleviate hepatic I/Ri is to exploit the potent anti-inflammatory and cytoprotective effects of carbon monoxide (CO) by application of so-called CO-releasing molecules (CORMs). Here, we assessed whether CO released from CORM-2 protects against hepatic I/Ri in a rat model.</p> <p>Methods</p> <p>Forty male Wistar rats were randomly assigned into four groups (n = 10). Sham group underwent a sham operation and received saline. I/R group underwent hepatic I/R procedure by partial clamping of portal structures to the left and median lobes with a microvascular clip for 60 minutes, yielding ~70% hepatic ischemia and subsequently received saline. CORM-2 group underwent the same procedure and received 8 mg/kg of CORM-2 at time of reperfusion. iCORM-2 group underwent the same procedure and received iCORM-2 (8 mg/kg), which does not release CO. Therapeutic effects of CORM-2 on hepatic I/Ri was assessed by measuring serum damage markers AST and ALT, liver histology score, TUNEL-scoring of apoptotic cells, NFkB-activity in nuclear liver extracts, serum levels of pro-inflammatory cytokines TNF-α and IL-6, and hepatic neutrophil infiltration.</p> <p>Results</p> <p>A single systemic infusion with CORM-2 protected the liver from I/Ri as evidenced by a reduction in serum AST/ALT levels and an improved liver histology score. Treatment with CORM-2 also up-regulated expression of the anti-apoptotic protein Bcl-2, down-regulated caspase-3 activation, and significantly reduced the levels of apoptosis after I/Ri. Furthermore, treatment with CORM-2 significantly inhibited the activity of the pro-inflammatory transcription factor NF-κB as measured in nuclear extracts of liver homogenates. Moreover, CORM-2 treatment resulted in reduced serum levels of pro-inflammatory cytokines TNF-α and IL-6 and down-regulation of the adhesion molecule ICAM-1 in the endothelial cells of liver. In line with these findings, CORM-2 treatment reduced the accumulation of neutrophils in the liver upon I/Ri. Similar treatment with an inactive variant of CORM-2 (iCORM-2) did not have any beneficial effect on the extent of liver I/Ri.</p> <p>Conclusions</p> <p>CORM-2 treatment at the time of reperfusion had several distinct beneficial effects on severity of hepatic I/Ri that may be of therapeutic value for the prevention of tissue damage as a result of I/Ri during hepatic surgery.</p
    • …
    corecore