1,752 research outputs found

    The Makapansgat Limeworks grey breccia: hominids, hyaenas, hystricids or hillwash?

    Get PDF
    Main articleThe question of the origin of the Makapansgat Limeworks grey breccia is here considered from two viewpoints: (a) the accumulation of bones within a catchment area; and (b) the possible concentration of the bones in their final resting place. The potential role of hyaenas and porcupines as bone-accumulating agents is investigated. Nine categories of hyaena damage to bone surfaces could be distinguished on collections of bone taken from a series of recent hyaena breeding dens. All nine categories can be demonstrated in identical form on fossil bones from the grey breccia. It is concluded that carnivores have played a more substantial role as accumulators of the bones in this breccia than has previously been acknowledged. Porcupines are excluded as major contributors to the grey breccia bone assemblage on the basis of the low percentage of porcupine-gnawed bones present compared with recent porcupine accumulations. Furthermore, the pattern of damage observed on porcupine-collected skeletal elements does not resemble that documented for the grey breccia. A 3-dimensional computer plot of the topography of the Limeworks travertine floor shows the presence of two larger and two smaller basins separated from each other by floor "highs". A floor "high" around the grey breccia is demonstrated and may have been a significant factor in bone concentration. Sedimentation within separate basins need -not necessarily have been synchronous or equivalent, and the practice of equating Members from one part of the cavern to another is questioned. Stereographic projections of the dip and strike orientations of the long axes of a number of in situ grey breccia bones in two separate areas indicate orientation patterns and imbrication. The results of the projections suggest that a combination of water current action and gravity may have been responsible for the present configuration of the bones.Non

    Quantum Teleportation of Light

    Full text link
    Requirements for the successful teleportation of a beam of light, including its temporal correlations, are discussed. Explicit expressions for the degrees of first- and second-order optical coherence are derived. Teleportation of an antibunched photon stream illustrates our results.Comment: 4 pages, 5 figure

    Polarization and decoherence in a two-component Bose-Einstein Condensate

    Full text link
    We theoretically investigate polarization properties of a two-component Bose-Einstein condensate (BEC) and influence of decoherence induced by environment on BEC polarization through introducing four BEC Stokes operators which are quantum analog of the classical Stokes parameters for a light field. BEC polarization states can be geometrically described by a Poincar\'{e} sphere defined by expectation values of BEC Stokes operators. Without decoherence, it is shown that nonlinear inter-atomic interactions in the BEC induce periodic polarization oscillations whose periods depend on the difference between self-interaction in each component and inter-component interaction strengths. In particular, when inter-atomic nonlinear self-interaction in each BEC component equals inter-component nonlinear interaction, Stokes vector associated with Stokes operators precesses around a fixed axis in the dynamic evolution of the BEC. The value of the processing frequency is determined by the strength of the linear coupling between two components of the BEC. When decoherence is involved, we find each component of the Stokes vector decays which implies that decoherence depolarizes the BEC.Comment: 10 pages, 2 figure

    Measuring the quantum statistics of an atom laser beam

    Get PDF
    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, we show that experimental realisations of the scheme may be tested with existing methods via measurements of Glauber's intensity correlation function.Comment: 4 pages, 3 figure

    Heterodyne and adaptive phase measurements on states of fixed mean photon number

    Get PDF
    The standard technique for measuring the phase of a single mode field is heterodyne detection. Such a measurement may have an uncertainty far above the intrinsic quantum phase uncertainty of the state. Recently it has been shown [H. M. Wiseman and R. B. Killip, Phys. Rev. A 57, 2169 (1998)] that an adaptive technique introduces far less excess noise. Here we quantify this difference by an exact numerical calculation of the minimum measured phase variance for the various schemes, optimized over states with a fixed mean photon number. We also analytically derive the asymptotics for these variances. For the case of heterodyne detection our results disagree with the power law claimed by D'Ariano and Paris [Phys. Rev. A 49, 3022 (1994)].Comment: 9 pages, 2 figures, minor changes from journal versio

    Adaptive Quantum Measurements of a Continuously Varying Phase

    Get PDF
    We analyze the problem of quantum-limited estimation of a stochastically varying phase of a continuous beam (rather than a pulse) of the electromagnetic field. We consider both non-adaptive and adaptive measurements, and both dyne detection (using a local oscillator) and interferometric detection. We take the phase variation to be \dot\phi = \sqrt{\kappa}\xi(t), where \xi(t) is \delta-correlated Gaussian noise. For a beam of power P, the important dimensionless parameter is N=P/\hbar\omega\kappa, the number of photons per coherence time. For the case of dyne detection, both continuous-wave (cw) coherent beams and cw (broadband) squeezed beams are considered. For a coherent beam a simple feedback scheme gives good results, with a phase variance \simeq N^{-1/2}/2. This is \sqrt{2} times smaller than that achievable by nonadaptive (heterodyne) detection. For a squeezed beam a more accurate feedback scheme gives a variance scaling as N^{-2/3}, compared to N^{-1/2} for heterodyne detection. For the case of interferometry only a coherent input into one port is considered. The locally optimal feedback scheme is identified, and it is shown to give a variance scaling as N^{-1/2}. It offers a significant improvement over nonadaptive interferometry only for N of order unity.Comment: 11 pages, 6 figures, journal versio

    Adaptive single-shot phase measurements: The full quantum theory

    Full text link
    The phase of a single-mode field can be measured in a single-shot measurement by interfering the field with an effectively classical local oscillator of known phase. The standard technique is to have the local oscillator detuned from the system (heterodyne detection) so that it is sometimes in phase and sometimes in quadrature with the system over the course of the measurement. This enables both quadratures of the system to be measured, from which the phase can be estimated. One of us [H.M. Wiseman, Phys. Rev. Lett. 75, 4587 (1995)] has shown recently that it is possible to make a much better estimate of the phase by using an adaptive technique in which a resonant local oscillator has its phase adjusted by a feedback loop during the single-shot measurement. In Ref.~[H.M. Wiseman and R.B. Killip, Phys. Rev. A 56, 944] we presented a semiclassical analysis of a particular adaptive scheme, which yielded asymptotic results for the phase variance of strong fields. In this paper we present an exact quantum mechanical treatment. This is necessary for calculating the phase variance for fields with small photon numbers, and also for considering figures of merit other than the phase variance. Our results show that an adaptive scheme is always superior to heterodyne detection as far as the variance is concerned. However the tails of the probability distribution are surprisingly high for this adaptive measurement, so that it does not always result in a smaller probability of error in phase-based optical communication.Comment: 17 pages, LaTeX, 8 figures (concatenated), Submitted to Phys. Rev.

    Phase measurements at the theoretical limit

    Get PDF
    It is well known that the result of any phase measurement on an optical mode made using linear optics has an introduced uncertainty in addition to the intrinsic quantum phase uncertainty of the state of the mode. The best previously published technique [H. M. Wiseman and R.B. Killip, Phys. Rev. A 57, 2169 (1998)] is an adaptive technique that introduces a phase variance that scales as n^{-1.5}, where n is the mean photon number of the state. This is far above the minimum intrinsic quantum phase variance of the state, which scales as n^{-2}. It has been shown that a lower limit to the phase variance that is introduced scales as ln(n)/n^2. Here we introduce an adaptive technique that attains this theoretical lower limit.Comment: 9 pages, 5 figures, updated with better feedback schem

    Scaling law in target-hunting processes

    Full text link
    We study the hunting process for a target, in which the hunter tracks the goal by smelling odors it emits. The odor intensity is supposed to decrease with the distance it diffuses. The Monte Carlo experiment is carried out on a 2-dimensional square lattice. Having no idea of the location of the target, the hunter determines its moves only by random attempts in each direction. By sorting the searching time in each simulation and introducing a variable xx to reflect the sequence of searching time, we obtain a curve with a wide plateau, indicating a most probable time of successfully finding out the target. The simulations reveal a scaling law for the searching time versus the distance to the position of the target. The scaling exponent depends on the sensitivity of the hunter. Our model may be a prototype in studying such the searching processes as various foods-foraging behavior of the wild animals.Comment: 7 figure
    • 

    corecore