49 research outputs found

    Divergence in CD8+ T Cell Epitopes of HIV-1 as an Immune Escape Mechanism

    Get PDF
    More than 40 million people are living with human immunodeficiency virus-1 (HIV-1). A prophylactic vaccine inducing a 'sterilizing immunity' is desired to prevent further infections, but will require many years to develop. Moreover, prophylactic vaccines will not help the millions of people who are already infected with the virus, and who face life-long treatment with expensive and toxic antiretroviral therapy (ART). This dissertation is based on the proposal that the best strategy for these individuals is a therapeutic vaccine that will attack residual viral reservoirs by expanding HIV-1 specific, primary T cell responses to the persons's own, autologous virus. Previously, this laboratory demonstrated that mature dendritic cells (DC) loaded with immunodominant HIV-1 peptides or HIV-1 infected apoptotic bodies can activate residual HIV-1 specific memory T cell responses. However, such memory T cells are only partially restored during ART. I hypothesized that targeting naive CD8⁺ T cells through a DC-based immunotherapy could elicit a robust and broad T cell response to HIV-1. Furthermore, most immunotherapy studies have used consensus strains of HIV-1 antigens that I believe inadequately represent the host's diverse pool of HIV-1 quasispecies. The current study has provided initial data that support that CD8⁺ T cells can be primed by in vitro engineered DC, even against autologous HIV-1 peptides representing immune escape variants. This study therefore supports the concept of using autologous virus as an antigen in immunotherapy and demonstrates that the use of autologous viral sequences expands both memory and primary T cell responses in vitro. Thus, a potential advantage is that future immunotherapies could use autologous virus representing a large repertoire of the host's diverse HIV-1 antigen pool. This could elicit primary immune responses specific for each patient's quasispecies of HIV-1, as well as activation of residual HIV-1 specific memory T cells, giving the broadest immune control of HIV-1 infection during ART. Such an approach has important public health implications by having a strong positive impact on, and improve the control of, HIV-1 infection in persons on ART. It also serves as an in vitro priming model for development of prophylactic vaccines against HIV-1 and other infectious agents

    Viral Protein Fragmentation May Broaden T-Cell Responses to HIV Vaccines

    Get PDF
    High mutation rates of human immunodeficiency virus (HIV) allows escape from T cell recognition preventing development of effective T cell vaccines. Vaccines that induce diverse T cell immune responses would help overcome this problem. Using SIV gag as a model vaccine, we investigated two approaches to increase the breadth of the CD8 T cell response. Namely, fusion of vaccine genes to ubiquitin to target the proteasome and increase levels of MHC class I peptide complexes and gene fragmentation to overcome competition between epitopes for presentation and recognition.three vaccines were compared: full-length unmodified SIV-mac239 gag, full-length gag fused at the N-terminus to ubiquitin and 7 gag fragments of equal size spanning the whole of gag with ubiquitin-fused to the N-terminus of each fragment. Genes were cloned into a replication defective adenovirus vector and immunogenicity assessed in an in vitro human priming system. The breadth of the CD8 T cell response, defined by the number of distinct epitopes, was assessed by IFN-Ξ³-ELISPOT and memory phenotype and cytokine production evaluated by flow cytometry. We observed an increase of two- to six-fold in the number of epitopes recognised in the ubiquitin-fused fragments compared to the ubiquitin-fused full-length gag. In contrast, although proteasomal targeting was achieved, there was a marked reduction in the number of epitopes recognised in the ubiquitin-fused full-length gag compared to the full-length unmodified gene, but there were no differences in the number of epitope responses induced by non-ubiquitinated full-length gag and the ubiquitin-fused mini genes. Fragmentation and ubiquitination did not affect T cell memory differentiation and polyfunctionality, though most responses were directed against the Ad5 vector.Fragmentation but not fusion with ubiquitin increases the breadth of the CD8 T vaccine response against SIV-mac239 gag. Thus gene fragmentation of HIV vaccines may maximise responses

    Immunoprotectivity of HLA-A2 CTL Peptides Derived from Respiratory Syncytial Virus Fusion Protein in HLA-A2 Transgenic Mouse

    Get PDF
    Identification of HLA-restricted CD8+ T cell epitopes is important to study RSV-induced immunity and illness. We algorithmically analyzed the sequence of the fusion protein (F) of respiratory syncytial virus (RSV) and generated synthetic peptides that can potentially bind to HLA-A*0201. Four out of the twenty-five 9-mer peptides tested: peptides 3 (F33–41), 13 (F214–222), 14 (F273–281), and 23 (F559–567), were found to bind to HLA-A*0201 with moderate to high affinity and were capable of inducing IFN-Ξ³ and IL-2 secretion in lymphocytes from HLA-A*0201 transgenic (HLA-Tg) mice pre-immunized with RSV or recombinant adenovirus expressing RSV F. HLA-Tg mice were immunized with these four peptides and were found to induce both Th1 and CD8+ T cell responses in in vitro secondary recall. Effector responses induced by these peptides were observed to confer differential protection against live RSV challenge. These peptides also caused better recovery of body weight loss induced by RSV. A significant reduction of lung viral load was observed in mice immunized with peptide 23, which appeared to enhance the levels of inflammatory chemokines (CCL17, CCL22, and IL-18) but did not increase eosinophil infiltration in the lungs. Whereas, significant reduction of infiltrated eosinophils induced by RSV infection was found in mice pre-immunized with peptide 13. Our results suggest that HLA-A2-restricted epitopes of RSV F protein could be useful for the development of epitope-based RSV vaccine

    Life After Millennials: Understanding and Supporting Gen Z

    No full text
    Higher education enrollment is in the midst of a generational shift, with Generation Z students rapidly replacing millennials on campuses. In this session, we’ll cover the characteristics of Gen Z, practical strategies for effectively reaching these students, and how Winthrop offices are adapting to fit the needs of this generation
    corecore