32 research outputs found

    CDK4 T172 phosphorylation is central in a CDK7-dependent bidirectional CDK4/CDK2 interplay mediated by p21 phosphorylation at the restriction point

    Get PDF
    Cell cycle progression, including genome duplication, is orchestrated by cyclin-dependent kinases (CDKs). CDK activation depends on phosphorylation of their T-loop by a CDK-activating kinase (CAK). In animals, the only known CAK for CDK2 and CDK1 is cyclin H-CDK7, which is constitutively active. Therefore, the critical activation step is dephosphorylation of inhibitory sites by Cdc25 phosphatases rather than unrestricted T-loop phosphorylation. Homologous CDK4 and CDK6 bound to cyclins D are master integrators of mitogenic/oncogenic signaling cascades by initiating the inactivation of the central oncosuppressor pRb and cell cycle commitment at the restriction point. Unlike the situation in CDK1 and CDK2 cyclin complexes, and in contrast to the weak but constitutive T177 phosphorylation of CDK6, we have identified the T-loop phosphorylation at T172 as the highly regulated step determining CDK4 activity. Whether both CDK4 and CDK6 phosphorylations are catalyzed by CDK7 remains unclear. To answer this question, we took a chemical-genetics approach by using analogue-sensitive CDK7(as/as) mutant HCT116 cells, in which CDK7 can be specifically inhibited by bulky adenine analogs. Intriguingly, CDK7 inhibition prevented activating phosphorylations of CDK4/6, but for CDK4 this was at least partly dependent on its binding to p21(cip1). In response to CDK7 inhibition, p21-binding to CDK4 increased concomitantly with disappearance of the most abundant phosphorylation of p21, which we localized at S130 and found to be catalyzed by both CDK4 and CDK2. The S130A mutation of p21 prevented the activating CDK4 phosphorylation, and inhibition of CDK4/6 and CDK2 impaired phosphorylations of both p21 and p21-bound CDK4. Therefore, specific CDK7 inhibition revealed the following: a crucial but partly indirect CDK7 involvement in phosphorylation/activation of CDK4 and CDK6; existence of CDK4-activating kinase(s) other than CDK7; and novel CDK7-dependent positive feedbacks mediated by p21 phosphorylation by CDK4 and CDK2 to sustain CDK4 activation, pRb inactivation, and restriction point passage

    Critical mechanisms of CDK4 activation, the key of cell cycle commitment and an essential target of oncogenic processes. Roles of p21 phosphorylations and identification of novel CDK4 activating kinases

    No full text
    Les tumeurs sont, au moins en partie, des maladies de la régulation du cycle cellulaire. Le point de restriction (R) est un point fondamental du cycle cellulaire où les cascades de signalisation mitogéniques (y compris leurs perversions oncogènes) et l'état métabolique des cellules sont intégrés pour engager le cycle de division cellulaire. Les CDK4 et CDK6 sont les premières CDKs à être activées en réponse aux signaux de prolifération cellulaire.En initiant la phosphorylation inactivatrice de l'oncosuppresseur central pRb, les CDK4 / 6 liées aux cyclines D jouent un rôle essentiel dans le passage du point R et donc dans la décision de multiplication cellulaire, en particulier dans la plupart des cellules cancéreuses dans lesquelles l'activité de CDK4 est fortement dérégulée. Les médicaments inhibiteurs de CDK4 / 6 sont maintenant évalués dans la plupart des cancers dans de nombreux essais cliniques. Le plus avancé (Palbociclib-PD0332991) a été approuvé en 2015 par la FDA pour le traitement des cancers métastatiques du sein. Notre groupe a identifié la phosphorylation activatrice sur la Thr172 comme l'étape hautement régulée qui détermine l'activation de CDK4. La question de savoir si les phosphorylations de CDK4 et de CDK6 sont catalysées par la seule « CDK-activating kinase » (CAK, cycline H-CDK4-Mat1) reste incertaine. En utilisant des cellules de cancer colorectal (HCT116) exprimant une version de CDK7 spécifiquement inhibable (dite « analog sensitive »), nous avons participé à une étude qui démontre, d’une part, une implication cruciale de la CDK7 dans la phosphorylation / activation de CDK4 et CDK6 et, d’autre part, l'existence de kinase(s) activatrice(s) de la CDK4 différente(s) de la CDK7. De plus, cette étude a démontré que l'activité de la CDK7 était conditionnée, au moins en partie, par la liaison de p21 à la CDK4, laquelle augmentait en réponse à l'inhibition de CDK7. L’augmentation de cette liaison coïncidait avec la disparition de la phosphorylation la plus abondante de p21, que nous avons localisée (par des analyses d'électrophorèse bidimensionnelle) sur la Ser130 et que nous avons montré être catalysée par la CDK4 et la CDK2. De manière surprenante, la phosphorylation sur Ser130 de p21 était inhibée non seulement par l'inhibition de CDK7, mais également par la Roscovitine et le CR8 (inhibiteurs de CDK2) et le Palbociclib. Ensemble, ces observations suggèraient que l'inactivation de pRb et le passage de R sont contrôlés par des mécanismes de rétroaction positive dépendants de la CDK7 médiés par la phosphorylation de la p21 par la CDK4 et la CDK2 pour faciliter et maintenir l'activation de la CDK4. De plus, nos résultats confirmaient l’hypothèse de l'existence kinase(s) activatrice(s) de la CDK4 autre(s) que la CDK7. Notre groupe avait démontré précédemment que la régulation de la phosphorylation de la CDK4 ne s'applique pas à son homologue CDK6, ce qui s'expliquait par l'absence d'une proline critique dans le domaine phosphoaccepteur (QMALTPVVVT dans CDK4 vs QMALTSVVVT dans CDK6). Ces données iniquaient que la ou les kinase (s) responsable(s) de la phosphorylation sur Thr172 de CDK4 devrai(en)t être dirigée(s) par la proline 173 uniquement présente dans la CDK4 (« proline-directed kinase(s) »).L'objectif principal de cette thèse est l'identification de kinase(s) impliquée(s) dans cette phosphorylation. Nous avons donc sélectionné une liste restreinte de « proline-directed kinases » (PDK) requises pour la prolifération cellulaire. Parmi celles-ci, les JNK, qui sont des PDKs, sont des interacteurs de p21 et CDK4 et peuvent avoir un rôle oncogène. De manière importante, nous avons observé que les JNKs, mais pas la CAK / CDK7, phosphorylaient in vitro la p21 et la CDK4 liée aux cyclines D. Les JNKs phosphorylaient également p21 sur ses trois sites P-T/S (Thr57, Ser130, Ser98). En mutant ces sites (T57A, S130A, S98A, T57A / S130A), nous avons montré que la phosphorylation de p21 par les JNKs n'est pas nécessaire pour la phosphorylation et l'activation de la CDK4 liée à p21. Par conséquent, in vitro les JNKs peuvent activer les complexes CDK4 liés à la p21, en agissant d’une part comme des kinases phosphorylant directement la CDK4 dans les complexes de cycline D-CDK4 stabilisés par la liaison de p21 et d’autre part en phosphorylant indépendamment des résidus de p21 impliqués dans l'activation de CDK4 dépendante de la CAK. Pour démontrer la relevance in vivo du rôle des JNKs comme kinases activatrices de la CDK4, nous avons analysé l'effet de leur inhibition dans les lignées de cellules tumorales T98G et MCF-7, les cellules MEF et des cellules CHO transfectées: dans tous ces cas, l'inhibition des JNKs, y compris l'inhibition spécifique de l'activité de JNK2 par une approche de génétique chimique en collaboration avec le groupe de Roger Davis, a réduit l'entrée du cycle cellulaire, et la phosphorylation et l'activation des complexes de cycline D1-CDK4. De manière intéressante, l’activation des complexes de cycline D3-CDK4 n’était pas affectée par l’inhibition des JNKs, apparemment parce que ces complexes étaient principalement associés à la p27 plutôt qu’à la p21. Mis ensemble, ces différents résultats nous amènent à proposer un nouveau modèle dans lequel différentes kinases activatrices de la CDK4, y compris les JNKs (indépendamment des phosphorylations de p21) et la CAK/CDK7 (de manière dépendante des phosphorylations de p21), coopèrent pour initier et maintenir l'activation de la CDK4 et générer la décision du cycle cellulaire. Cette nouvelle compréhension pourrait révéler de nouveaux mécanismes ciblables dans une perspective thérapeutique anti-cancéreuse.Tumors are, at least in part, diseases of cell cycle regulation. The restriction (R) point is a fundamental point of the cell cycle in which mitogenic signaling cascades (including their oncogenic perversions) and cell metabolic status are integrated to commit the cell division cycle. CDK4 and CDK6 are the first CDKs to be activated in response to cell proliferation signals. By initiating the inactivating phosphorylation of the central oncosuppressor pRb, cyclin D-bound CDK4/6 play an essential role at the passage through R and thus in the cell multiplication decision, especially in most cancer cells in which CDK4 activity is highly deregulated. CDK4/6 inhibitory drugs are now evaluated in many clinical trials against most cancers, and the most advanced (Palbociclib-PD0332991) was approved in 2015 by FDA for treatment of metastatic breast cancers. Our group has identified the activating Thr172 phosphorylation as the highly regulated step that determines CDK4 activation. Whether CDK4 and CDK6 phosphorylations are catalyzed by the sole CAK (cyclin H-CDK7-Mat1) remains unclear. In analogue-sensitive CDK7 (as/as) mutant HCT116 cells in which CDK7 can be specifically inhibited, we participated to a study demonstrating a crucial CDK7 involvement in phosphorylation/activation of CDK4 and CDK6 and existence of non-CDK7 CDK4 activating kinase(s). Moreover, this study demonstrated that CDK7 activity was conditioned, at least in part, by p21 binding to CDK4, which increased in response to CDK7 inhibition. This coincided with disappearance of the most abundant phosphorylation of p21, which was localized (by 2D-gel electrophoresis analyses) at Ser130 and found to be catalyzed by both CDK4 and CDK2. Surprisingly, Ser130 p21 phosphorylation was not inhibited only by CDK7 inhibition, but also by Roscovitine and CR8 (CDK2 inhibitors) and Palbociclib. All together, these observations suggested that pRb inactivation and R passage are controlled by CDK7-dependent positive feedbacks mediated by p21 phosphorylation by CDK4 and CDK2 to sustain CDK4 activation. Importantly, these results confirm the hypothesis of a non-CDK7 CDK4 activating kinase(s). Our group has previously demonstrated that the regulation of CDK4 phosphorylation does not apply to its homologue CDK6, which was explained by the lack of a critical proline in the phospho-acceptor domain (QMALTPVVVT in CDK4 vs QMALTSVVVT in CDK6). These data have indicated that the activity of kinase(s) responsible for Thr172 phosphorylation of CDK4 should be directed by the unique proline 173 of CDK4 (proline-directed kinase(s)). The primary objective of this thesis is the identification of kinase(s) involved in this phosphorylation. We thus selected a shortlist of proline-directed kinases (PDKs) required for cell proliferation. Among them JNKs, which are PDKs, are interactors of p21 and CDK4 and can have an oncogenic role. Importantly, we observed that JNKs, but not CAK/CDK7, did phosphorylate CDK4 in vitro in their complexes with cyclins D stabilized by p21 binding. JNKs also phosphorylated p21 in the three P-T/S phosphorylation sites (Thr57, Ser130, Ser98). Mutating p21 phosphorylation sites (T57A,S130A,S98A,T57A/S130A) we also demonstrated that in vitro, the phosphorylation of p21 by JNKs is not required for the phosphorylation and activation of p21-bound CDK4. Therefore, in vitro JNKs might activate p21-bound CDK4 complexes by acting as a direct CDK4-activating kinases for cyclin D-CDK4 complexes stabilized by p21 binding and also by independently phosphorylating p21 residues involved in CAK-dependent activation of CDK4. To demonstrate the relevance of the role of JNKs as possible CDK4-activating kinases in vivo we analyzed the effect of their inhibition in T98G and MCF-7 tumor cell lines, MEFs and transfected CHO cells: in all these cases, inhibition of JNKs, including specific inhibition of JNK2 activity by a chemical genetic approach in collaboration with Roger Davis group, reduced the cell cycle entry and phosphorylation and activation of cyclin D1-CDK4 complexes. Interestingly, the activation of cyclin D3-CDK4 complexes was not affected by the JNK inhibition, apparently because these complexes were mainly associated with p27 instead of p21. Putting together all these results, we propose a new model in which different CDK4-activating kinases, including JNKs (independently of p21 phosphorylation) and CAK/CDK7 (dependently on p21 phosphorylation), cooperate to initiate and maintain the activation of CDK4 and generate the cell cycle decision. This new understanding may reveal new druggable mechanisms and anti-cancer therapeutic targets.Doctorat en Sciences biomédicales et pharmaceutiques (Médecine)info:eu-repo/semantics/nonPublishe

    The CDK4/CDK6 inhibitor PD0332991 paradoxically stabilizes activated cyclin D3-CDK4/6 complexes

    No full text
    CDK4 and CDK6 bound to D-type cyclins are master integrators of G1 phase cell cycle regulations by initiating the inactivating phosphorylation of the central oncosuppressor pRb. Because of their frequent deregulation in cancer, cyclin D-CDK4/6 complexes are emerging as especially promising therapeutic targets. The specific CDK4/6 inhibitor PD0332991 is currently tested in a growing number of phase II/III clinical trials against a variety of pRb-proficient chemotherapy-resistant cancers. We have previously shown that PD0332991 inhibits not only CDK4/6 activity but also the activation by phosphorylation of the bulk of cyclin D-CDK4 complexes stabilized by p21 binding. Here we show that PD0332991 has either a positive or a negative impact on the activation of cyclin D-CDK4/6 complexes, depending on their binding to p21. Indeed, whereas PD0332991 inhibits the phosphorylation and activity of p21-bound CDK4/6, it specifically stabilized activated cyclin D3-CDK4/6 complexes devoid of p21 and p27. After elimination of PD0332991, these activated cyclin D3-CDK4/6 complexes persisted for at least 24 h, resulting in paradoxical cell cycle entry in the absence of a mitogenic stimulation. This unsuspected positive effect of PD0332991 on cyclin D3-CDK4/6 activation should be carefully assessed in the clinical evaluation of PD0332991, which until now only involves discontinuous administration protocols.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Evaluation of early and late effects into the acute spinal cord injury of an injectable functionalized self-assembling scaffold.

    Get PDF
    The complex physiopathological events occurring after spinal cord injury (SCI) make this devastating trauma still incurable. Self-assembling peptides (SAPs) are nanomaterials displaying some appealing properties for application in regenerative medicine because they mimic the structure of the extra-cellular matrix (ECM), are reabsorbable, allow biofunctionalizations and can be injected directly into the lesion. In this study we evaluated the putative neurorigenerative properties of RADA16-4G-BMHP1 SAP, proved to enhance in vitro neural stem cells survival and differentiation. This SAP (RADA16-I) has been functionalized with a bone marrow homing motif (BMHP1) and optimized via the insertion of a 4-glycine-spacer that ameliorates scaffold stability and exposure of the biomotifs. We injected the scaffold immediately after contusion in the rat spinal cord, then we evaluated the early effects by semi-quantitative RT-PCR and the late effects by histological analysis. Locomotor recovery over 8 weeks was assessed using Basso, Beattie, Bresnahan (BBB) test. Gene expression analysis showed that at 7 days after lesion the functionalized SAP induced a general upregulation of GAP-43, trophic factors and ECM remodelling proteins, whereas 3 days after SCI no remarkable changes were observed. Hystological analysis revealed that 8 weeks after SCI our scaffold increased cellular infiltration, basement membrane deposition and axon regeneration/sprouting within the cyst. Moreover the functionalized SAP showed to be compatible with the surrounding nervous tissue and to at least partially fill the cavities. Finally SAP injection resulted in a statistically significant improvement of both hindlimbs' motor performance and forelimbs-hindlimbs coordination. Altogether, these results indicate that RADA16-4G-BMHP1 induced favourable reparative processes, such as matrix remodelling, and provided a physical and trophic support to nervous tissue ingrowth. Thus this biomaterial, eventually combined with cells and growth factors, may constitute a promising biomimetic scaffold for regenerative applications in the injured central nervous system

    HMGB1 as an autocrine stimulus in human T98G glioblastoma cells: role in cell growth and migration.

    No full text
    HMGB1 (high mobility group box 1 protein) is a nuclear protein that can also act as an extracellular trigger of inflammation, proliferation and migration, mainly through RAGE (the receptor for advanced glycation end products); HMGB1\u2013RAGE interactions have been found to be important in a number of cancers. We investigated whether HMGB1 is an autocrine factor in human glioma cells. Western blots showed HMGB1 and RAGE expression in human malignant glioma cell lines. HMGB1 induced a dose-dependent increase in cell proliferation, which was found to be RAGE-mediated and involved the MAPK/ERK pathway. Moreover, in a wounding model, it induced a significant increase in cell migration, and RAGEdependent activation of Rac1 was crucial in giving the tumour cells a motile phenotype. The fact that blocking DNA replication with anti-mitotic agents did not reduce the distance migrated suggests the independence of the proliferative and migratory effects. We also found that glioma cells contain HMGB1 predominantly in the nucleus, and cannot secrete it constitutively or upon stimulation; however, necrotic glioma cells can release HMGB1 after it has translocated from the nucleus to cytosol. These findings provide the first evidence supporting the existence of HMGB1/RAGE signalling pathways in human glioblastoma cells, and suggest that HMGB1 may play an important role in the relationship between necrosis and malignancy in glioma tumours by acting as an autocrine factor that is capable of promoting the growth and migration of tumour cells. Keywords ERK1/2 HMGB1 Human gliomas Motilit

    Quantitative histological analysis in the chronic phase of SCI.

    No full text
    <p>(A): lesion size was quantified on spinal cord longitudinal sections stained with hematoxylin/eosin (Ai) and it was reported as cumulative area (mm<sup>2</sup>). No significant differences among groups were found when measuring both the whole cyst area (Aii) and the cavities into the cyst area (Aiii). Scale bar  = 800 µm. (B): GAP-43 positive fibers (Bi and Biii, red) were measured on six longitudinal sections after immunofluorescence staining and the values were expressed as percentage of the total area of the cyst. The GAP-43 immunopositive area was significantly higher in biomaterial-treated group (4G-BMHP1) than both control groups (saline and SCI control) (Bii). In Biii the positive GAP-43 signal is showed at higher magnification (asterisk and dotted line indicate the cyst and its border, respectively). Scale bar  = 400 µm in Bi, 50 µm in Biii. (C): CD68 positive cells (Ci and Ciii, green) were counted on three longitudinal sections after immunofluorescence staining and reported as cumulative number per mm<sup>2</sup>. Nuclei were counterstained with DAPI. Macrophage infiltration was observed in the tissue surrounding the cyst and into the cavities of all groups (Cii). In Ciii, at higher magnification, we reported an image representative of the CD68 positive cells (arrows) we observed in all groups. Scale bar  = 400 µm in Bi, 100 µm in Biii. Values represent means ± SEM. Significance symbols: * p<0.05, 4G-BMHP1 vs SCI control; ° p<0.05, 4G-BMHP1 vs saline.</p

    Immunofluorescence analysis of neuronal elements and nerve fibers within the scaffold.

    No full text
    <p>(A): the scaffold was infiltrated by neuronal cells (β-TubIII<sup>+</sup>, green) and sprouting/regenerating nerve fibers, that were positive for both GAP-43 (red) and β-TubIII (green). Merge of two stainings is reported at higher magnification on the right, arrows indicate some axons expressing both GAP-43 and β-TubIII. Scale bar  = 100 µm for images on the left and 50 µm for image on the right. (B): co-staining for β-TubIII (red) and MBP (green) revealed that some sprouting/regenerating fibers were myelinated, as seen on the right in the merge or below in the high-magnified inserts, where myelin surrounding some GAP-43<sup>+</sup> axons is visible (Bi, arrows). Scale bar  = 100 µm for images on the left, 50 µm for image on the right and 20 µm for images below. Nuclei were counterstained with DAPI.</p

    Characteristics of gene-specific primers for semi-quantitative RT-PCR.

    No full text
    1<p>NCBI accession number of mRNA and corresponding gene, available at <a href="http://www.ncbi.nlm.nih.gov/gene" target="_blank">http://www.ncbi.nlm.nih.gov/gene</a>.</p>2<p>cycle number corresponding to the exponential phase of amplification of the PCR product using 50 ng of cDNA.</p

    Gene expression analysis in the acute and subacute phases of spinal cord injury.

    No full text
    <p>Semi-quantitative RT-PCR was employed to evaluate mRNA expression of several genes involved in destructive and reparative processes following SCI (A). The relative expression of genes was determined by measuring the band intensity and using cyclophilin as housekeeping (relative density). Overall, at 3 days after SCI few differences were observed among treatment (4G-BMHP1) and both control (saline and SCI control) groups (Bi, Ci, Di); NT3, BDNF and NGF were undetectable in all groups. At 7 days after SCI there was a general upregulation of inflammatory genes in both injected groups (biomaterial or saline) in comparison with SCI control group (Bii), while a general mRNA overexpression for GAP-43, neurotrophins, growth factors (Cii) and ECM remodelling proteins (Dii) was observed only in the treatment group in comparison with one or both control groups; NGF was undetectable in all groups. Values represent means ± SEM. Significance symbols: * p<0.05, ** p<0.001.</p

    Evaluation of mature and immature nerve fibers infiltrating the cyst.

    No full text
    <p>Images show the cyst cavity in SCI control, saline injected and 4G-BMHP1 treated animals at 8 weeks after lesion. Asterisks indicate the scaffold. Immunolabelling for GAP-43 (red) coupled with SMI-31 (green) or SMI-32 (green) was made on longitudinal sections. Nuclei were counterstained with DAPI. Within the cyst, the majority of GAP-43<sup>+</sup> sprouting/growing axons consisted of immature fibers expressing the non-phosphorylated neurofilament H (SMI-32<sup>+</sup>), even if also GAP-43<sup>+</sup> mature fibers, staining for the phosphorylated neurofilament H (SMI-31<sup>+</sup>), were observed. The percentage of GAP-43<sup>+</sup> fibers expressing either SMI-32 or SMI-32 appeared similar in all groups. Scale bar  = 200 µm.</p
    corecore