37 research outputs found
The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report
The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument
The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report
The Habitable Exoplanet Observatory, or HabEx, has been designed to be the
Great Observatory of the 2030s. For the first time in human history,
technologies have matured sufficiently to enable an affordable space-based
telescope mission capable of discovering and characterizing Earthlike planets
orbiting nearby bright sunlike stars in order to search for signs of
habitability and biosignatures. Such a mission can also be equipped with
instrumentation that will enable broad and exciting general astrophysics and
planetary science not possible from current or planned facilities. HabEx is a
space telescope with unique imaging and multi-object spectroscopic capabilities
at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities
allow for a broad suite of compelling science that cuts across the entire NASA
astrophysics portfolio. HabEx has three primary science goals: (1) Seek out
nearby worlds and explore their habitability; (2) Map out nearby planetary
systems and understand the diversity of the worlds they contain; (3) Enable new
explorations of astrophysical systems from our own solar system to external
galaxies by extending our reach in the UV through near-IR. This Great
Observatory science will be selected through a competed GO program, and will
account for about 50% of the HabEx primary mission. The preferred HabEx
architecture is a 4m, monolithic, off-axis telescope that is
diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two
starlight suppression systems: a coronagraph and a starshade, each with their
own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information
about HabEx can be found here: https://www.jpl.nasa.gov/habex
The Overall Pattern of Cardiac Contraction Depends on a Spatial Gradient of Myosin Regulatory Light Chain Phosphorylation
AbstractEvolution of the human heart has incorporated a variety of successful strategies for motion used throughout the animal kingdom. One such strategy is to add the efficiency of torsion to compression so that blood is wrung, as well as pumped, out of the heart. Models of cardiac torsion have assumed uniform contractile properties of muscle fibers throughout the heart. Here, we show how a spatial gradient of myosin light chain phosphorylation across the heart facilitates torsion by inversely altering tension production and the stretch activation response. To demonstrate the importance of cardiac light chain phosphorylation, we cloned a myosin light chain kinase from a human heart and have identified a gain-in-function mutation in two individuals with cardiac hypertrophy
Opportunistic CT for Prediction of Adverse Postoperative Events in Patients with Spinal Metastases
The purpose of this study was to assess the value of body composition measures obtained from opportunistic abdominal computed tomography (CT) in order to predict hospital length of stay (LOS), 30-day postoperative complications, and reoperations in patients undergoing surgery for spinal metastases. 196 patients underwent CT of the abdomen within three months of surgery for spinal metastases. Automated body composition segmentation and quantifications of the cross-sectional areas (CSA) of abdominal visceral and subcutaneous adipose tissue and abdominal skeletal muscle was performed. From this, 31% (61) of patients had postoperative complications within 30 days, and 16% (31) of patients underwent reoperation. Lower muscle CSA was associated with increased postoperative complications within 30 days (OR [95% CI] = 0.99 [0.98–0.99], p = 0.03). Through multivariate analysis, it was found that lower muscle CSA was also associated with an increased postoperative complication rate after controlling for the albumin, ASIA score, previous systemic therapy, and thoracic metastases (OR [95% CI] = 0.99 [0.98–0.99], p = 0.047). LOS and reoperations were not associated with any body composition measures. Low muscle mass may serve as a biomarker for the prediction of complications in patients with spinal metastases. The routine assessment of muscle mass on opportunistic CTs may help to predict outcomes in these patients
A proof-of-concept randomized crossover clinical trial of a first-in-class vasopressin 1a receptor antagonist for PTSD: Design, methods, and recruitment
Background: Almost eight million Americans suffer from Posttraumatic Stress Disorder (PTSD). Current PTSD drug therapies rely on repurposed antidepressants and anxiolytics, which produce undesirable side effects and have recognized compliance issues. Vasopressin represents a promising and novel target for pharmacological intervention. Logistical issues implementing a clinical trial for a novel PTSD pharmaceutical are relatively uncharted territory as trials concerning a new agent have not been published in the past several decades. All published trials have repurposed FDA-approved psychoactive medications with known risk profiles. Our recruitment challenges are discussed in this context. Methods: An 18-week proof-of-concept randomized crossover clinical trial of a first-in-class vasopressin 1a receptor antagonist (SRX246) for PTSD was conducted. All participants received SRX246 for 8 weeks, the placebo for 8 weeks, and the drug vs. placebo arms were compared. Participants were assessed every 2 weeks for PTSD symptoms as well as other medication effects. Results were expected to provide an initial demonstration of safety and tolerability in this clinical population and potentially clinical efficacy in SRX246-treated patients measured by Clinician Administered PTSD Scale (CAPS) score changes, clinical impression, and other indices compared to placebo. The primary hypothesis was that SRX246 would result in a clinically meaningful 10-point reduction in mean CAPS score compared to placebo. Discussion: This study is the first to investigate an oral vasopressin 1a receptor antagonist for PTSD. As a wave of PTSD clinical trials with new pharmaceutical compounds are beginning now, lessons learned from our recruitment challenges may be invaluable to these endeavors