138 research outputs found
Non-detection of a statistically anisotropic power spectrum in large-scale structure
We search a sample of photometric luminous red galaxies (LRGs) measured by
the Sloan Digital Sky Survey (SDSS) for a quadrupolar anisotropy in the
primordial power spectrum, in which P(\vec{k}) is an isotropic power spectrum
P(k) multiplied by a quadrupolar modulation pattern. We first place limits on
the 5 coefficients of a general quadrupole anisotropy. We also consider
axisymmetric quadrupoles of the form P(\vec{k}) = P(k){1 +
g_*[(\hat{k}\cdot\hat{n})^2-1/3]} where \hat{n} is the axis of the anisotropy.
When we force the symmetry axis \hat{n} to be in the direction (l,b)=(94
degrees,26 degrees) identified in the recent Groeneboom et al. analysis of the
cosmic microwave background, we find g_*=0.006+/-0.036 (1 sigma). With uniform
priors on \hat{n} and g_* we find that -0.41<g_*<+0.38 with 95% probability,
with the wide range due mainly to the large uncertainty of asymmetries aligned
with the Galactic Plane. In none of these three analyses do we detect evidence
for quadrupolar power anisotropy in large scale structure.Comment: 23 pages; 10 figures; 3 tables; replaced with version published in
JCAP (added discussion of scale-varying quadrupolar anisotropy
Inflation driven by scalar field with non-minimal kinetic coupling with Higgs and quadratic potentials
We study a scalar field with non-minimal kinetic coupling to itself and to
the curvature. The slow rolling conditions allowing an inflationary background
have been found. The quadratic and Higgs type potentials have been considered,
and the corresponding values for the scalar fields at the end of inflation
allows to recover the connection with particle physics.Comment: 16 pages, to appear in JCA
Perturbations in electromagnetic dark energy
It has been recently proposed that the presence of a temporal electromagnetic
field on cosmological scales could explain the phase of accelerated expansion
that the universe is currently undergoing. The field contributes as a
cosmological constant and therefore, the homogeneous cosmology produced by such
a model is exactly the same as that of CDM. However, unlike a
cosmological constant term, electromagnetic fields can acquire perturbations
which in principle could affect CMB anisotropies and structure formation. In
this work, we study the evolution of inhomogeneous scalar perturbations in this
model. We show that provided the initial electromagnetic fluctuations generated
during inflation are small, the model is perfectly compatible with both CMB and
large scale structure observations at the same level of accuracy as
CDM.Comment: 12 pages, 3 figures. Added new comments to match the published
versio
On the nuclear dependence of the mu-e conversion branching ratio
The variation of the coherent branching ratio (ratio of the
reaction rate divided by the total muon-capture rate) through
the periodic table is studied by using exact muon wave functions. It was found
that, by using very heavy nuclei (e.g. \nuc{197}Au, the SINDRUM II target) as
conversion stopping-targets, the above ratio is favored by a
factor of about four to five than by using light ones (e.g. \nuc{48}Ti, chosen
as PRIME target).Comment: 7 pages, 1 Figure NIM Phys. Res., submitte
Searching for planar signatures in WMAP
We search for planar deviations of statistical isotropy in the Wilkinson
Microwave Anisotropy Probe (WMAP) data by applying a recently introduced
angular-planar statistics both to full-sky and to masked temperature maps,
including in our analysis the effect of the residual foreground contamination
and systematics in the foreground removing process as sources of error. We
confirm earlier findings that full-sky maps exhibit anomalies at the planar
() and angular () scales and , which
seem to be due to unremoved foregrounds since this features are present in the
full-sky map but not in the masked maps. On the other hand, our test detects
slightly anomalous results at the scales and in the
masked maps but not in the full-sky one, indicating that the foreground
cleaning procedure (used to generate the full-sky map) could not only be
creating false anomalies but also hiding existing ones. We also find a
significant trace of an anomaly in the full-sky map at the scale
, which is still present when we consider galactic cuts of
18.3% and 28.4%. As regards the quadrupole (), we find a coherent
over-modulation over the whole celestial sphere, for all full-sky and cut-sky
maps. Overall, our results seem to indicate that current CMB maps derived from
WMAP data do not show significant signs of anisotropies, as measured by our
angular-planar estimator. However, we have detected a curious coherence of
planar modulations at angular scales of the order of the galaxy's plane, which
may be an indication of residual contaminations in the full- and cut-sky maps.Comment: 15 pages with pdf figure
Anisotropic Inflation from Charged Scalar Fields
We consider models of inflation with U(1) gauge fields and charged scalar
fields including symmetry breaking potential, chaotic inflation and hybrid
inflation. We show that there exist attractor solutions where the anisotropies
produced during inflation becomes comparable to the slow-roll parameters. In
the models where the inflaton field is a charged scalar field the gauge field
becomes highly oscillatory at the end of inflation ending inflation quickly.
Furthermore, in charged hybrid inflation the onset of waterfall phase
transition at the end of inflation is affected significantly by the evolution
of the background gauge field. Rapid oscillations of the gauge field and its
coupling to inflaton can have interesting effects on preheating and
non-Gaussianities.Comment: minor changes, references added, figures are modified, conforms JCAP
published versio
Thermodynamic Derivation of the Tsallis and R\'enyi Entropy Formulas and the Temperature of Quark-Gluon Plasma
We derive Tsallis entropy, Sq, from universal thermostat independence and
obtain the functional form of the corresponding generalized entropy-probability
relation. Our result for finite thermostats interprets thermodynamically the
subsystem temperature, T1, and the index q in terms of the temperature, T,
entropy, S, and heat capacity, C of the reservoir as T1 = T exp(-S/C) and q = 1
- 1/C. In the infinite C limit, irrespective to the value of S, the
Boltzmann-Gibbs approach is fully recovered. We apply this framework for the
experimental determination of the original temperature of a finite thermostat,
T, from the analysis of hadron spectra produced in high energy collisions, by
analyzing frequently considered simple models of the quark-gluon plasma.Comment: 4 pages 1 Figure PRL style, revised presentatio
Modified Gravity: the CMB, Weak Lensing and General Parameterisations
We examine general physical parameterisations for viable gravitational models
in the framework. This is related to the mass of an additional scalar
field, called the scalaron, that is introduced by the theories. Using a simple
parameterisation for the scalaron mass we show there is an exact
correspondence between the model and popular parameterisations of the modified
Poisson equation and the ratio of the Newtonian potentials
. However, by comparing the aforementioned model against other
viable scalaron theories we highlight that the common form of and
in the literature does not accurately represent behaviour.
We subsequently construct an improved description for the scalaron mass (and
therefore and ) which captures their essential features
and has benefits derived from a more physical origin. We study the scalaron's
observational signatures and show the modification to the background Friedmann
equation and CMB power spectrum to be small. We also investigate its effects in
the linear and non linear matter power spectrum--where the signatures are
evident--thus giving particular importance to weak lensing as a probe of these
models. Using this new form, we demonstrate how the next generation Euclid
survey will constrain these theories and its complementarity to current solar
system tests. In the most optimistic case Euclid, together with a Planck prior,
can constrain a fiducial scalaron mass at
the level. However, the decay rate of the scalaron mass, with
fiducial value , can be constrained to uncertainty
Measuring our Peculiar Velocity by "Pre-deboosting" the CMB
It was recently shown that our peculiar velocity \beta with respect to the
CMB induces mixing among multipoles and off-diagonal correlations at all scales
which can be used as a measurement of \beta, which is independent of the
standard measurement using the CMB temperature dipole. The proposed techniques
rely however on a perturbative expansion which breaks down for \ell \gtrsim
1/(\beta) \approx 800. Here we propose a technique which consists of deboosting
the CMB temperature in the time-ordered data and show that it extends the
validity of the perturbation analysis multipoles up to \ell \sim 10000. We also
obtain accurate fitting functions for the mixing between multipoles valid in a
full non-linear treatment. Finally we forecast the achievable precision with
which these correlations can be measured in a number of current and future CMB
missions. We show that Planck could measure the velocity with a precision of
around 60 km/s, ACTPol in 4 years around 40 km/s, while proposed future
experiments could further shrink this error bar by over a factor of around 2.Comment: 14 pages, 7 figures. Revised projections for ACTPol, SPTPol and
ACBAR; included projections for BICEP2; extended conclusions; typos correcte
Issues on Generating Primordial Anisotropies at the End of Inflation
We revisit the idea of generating primordial anisotropies at the end of
inflation in models of inflation with gauge fields. To be specific we consider
the charged hybrid inflation model where the waterfall field is charged under a
U(1) gauge field so the surface of end of inflation is controlled both by
inflaton and the gauge fields. Using delta N formalism properly we find that
the anisotropies generated at the end of inflation from the gauge field
fluctuations are exponentially suppressed on cosmological scales. This is
because the gauge field evolves exponentially during inflation while in order
to generate appreciable anisotropies at the end of inflation the spectator
gauge field has to be frozen and scale invariant. We argue that this is a
generic feature, that is, one can not generate observable anisotropies at the
end of inflation within an FRW background.Comment: V3: new references added, JCAP published versio
- …