1 research outputs found
Space-based research in fundamental physics and quantum technologies
Space-based experiments today can uniquely address important questions
related to the fundamental laws of Nature. In particular, high-accuracy physics
experiments in space can test relativistic gravity and probe the physics beyond
the Standard Model; they can perform direct detection of gravitational waves
and are naturally suited for precision investigations in cosmology and
astroparticle physics. In addition, atomic physics has recently shown
substantial progress in the development of optical clocks and atom
interferometers. If placed in space, these instruments could turn into powerful
high-resolution quantum sensors greatly benefiting fundamental physics.
We discuss the current status of space-based research in fundamental physics,
its discovery potential, and its importance for modern science. We offer a set
of recommendations to be considered by the upcoming National Academy of
Sciences' Decadal Survey in Astronomy and Astrophysics. In our opinion, the
Decadal Survey should include space-based research in fundamental physics as
one of its focus areas. We recommend establishing an Astronomy and Astrophysics
Advisory Committee's interagency ``Fundamental Physics Task Force'' to assess
the status of both ground- and space-based efforts in the field, to identify
the most important objectives, and to suggest the best ways to organize the
work of several federal agencies involved. We also recommend establishing a new
NASA-led interagency program in fundamental physics that will consolidate new
technologies, prepare key instruments for future space missions, and build a
strong scientific and engineering community. Our goal is to expand NASA's
science objectives in space by including ``laboratory research in fundamental
physics'' as an element in agency's ongoing space research efforts.Comment: a white paper, revtex, 27 pages, updated bibliograph