3,541 research outputs found
Two-dimensional approach to relativistic positioning systems
A relativistic positioning system is a physical realization of a coordinate
system consisting in four clocks in arbitrary motion broadcasting their proper
times. The basic elements of the relativistic positioning systems are presented
in the two-dimensional case. This simplified approach allows to explain and to
analyze the properties and interest of these new systems. The positioning
system defined by geodesic emitters in flat metric is developed in detail. The
information that the data generated by a relativistic positioning system give
on the space-time metric interval is analyzed, and the interest of these
results in gravimetry is pointed out.Comment: 11 pages, 5 figures. v2: a brief description of the principal
bibliography has been adde
Positioning with stationary emitters in a two-dimensional space-time
The basic elements of the relativistic positioning systems in a
two-dimensional space-time have been introduced in a previous work [Phys. Rev.
D {\bf 73}, 084017 (2006)] where geodesic positioning systems, constituted by
two geodesic emitters, have been considered in a flat space-time. Here, we want
to show in what precise senses positioning systems allow to make {\em
relativistic gravimetry}. For this purpose, we consider stationary positioning
systems, constituted by two uniformly accelerated emitters separated by a
constant distance, in two different situations: absence of gravitational field
(Minkowski plane) and presence of a gravitational mass (Schwarzschild plane).
The physical coordinate system constituted by the electromagnetic signals
broadcasting the proper time of the emitters are the so called {\em emission
coordinates}, and we show that, in such emission coordinates, the trajectories
of the emitters in both situations, absence and presence of a gravitational
field, are identical. The interesting point is that, in spite of this fact,
particular additional information on the system or on the user allows not only
to distinguish both space-times, but also to complete the dynamical description
of emitters and user and even to measure the mass of the gravitational field.
The precise information under which these dynamical and gravimetric results may
be obtained is carefully pointed out.Comment: 14 pages; 5 figure
Relativistic Positioning Systems: The Emission Coordinates
This paper introduces some general properties of the gravitational metric and
the natural basis of vectors and covectors in 4-dimensional emission
coordinates. Emission coordinates are a class of space-time coordinates defined
and generated by 4 emitters (satellites) broadcasting their proper time by
means of electromagnetic signals. They are a constitutive ingredient of the
simplest conceivable relativistic positioning systems. Their study is aimed to
develop a theory of these positioning systems, based on the framework and
concepts of general relativity, as opposed to introducing `relativistic
effects' in a classical framework. In particular, we characterize the causal
character of the coordinate vectors, covectors and 2-planes, which are of an
unusual type. We obtain the inequality conditions for the contravariant metric
to be Lorentzian, and the non-trivial and unexpected identities satisfied by
the angles formed by each pair of natural vectors. We also prove that the
metric can be naturally split in such a way that there appear 2 parameters
(scalar functions) dependent exclusively on the trajectory of the emitters,
hence independent of the time broadcast, and 4 parameters, one for each
emitter, scaling linearly with the time broadcast by the corresponding
satellite, hence independent of the others.Comment: 13 pages, 3 figures. Only format changed for a new submission.
Submitted to Class. Quantum Gra
Relativistic positioning: four-dimensional numerical approach in Minkowski space-time
We simulate the satellite constellations of two Global Navigation Satellite
Systems: Galileo (EU) and GPS (USA). Satellite motions are described in the
Schwarzschild space-time produced by an idealized spherically symmetric non
rotating Earth. The trajectories are then circumferences centered at the same
point as Earth. Photon motions are described in Minkowski space-time, where
there is a well known relation, Coll, Ferrando & Morales-Lladosa (2010),
between the emission and inertial coordinates of any event. Here, this relation
is implemented in a numerical code, which is tested and applied. The first
application is a detailed numerical four-dimensional analysis of the so-called
emission coordinate region and co-region. In a second application, a GPS
(Galileo) satellite is considered as the receiver and its emission coordinates
are given by four Galileo (GPS) satellites. The bifurcation problem (double
localization) in the positioning of the receiver satellite is then pointed out
and discussed in detail.Comment: 16 pages, 9 figures, published (online) in Astrophys. Space Sc
Positioning systems in Minkowski space-time: Bifurcation problem and observational data
In the framework of relativistic positioning systems in Minkowski space-time,
the determination of the inertial coordinates of a user involves the {\em
bifurcation problem} (which is the indeterminate location of a pair of
different events receiving the same emission coordinates). To solve it, in
addition to the user emission coordinates and the emitter positions in inertial
coordinates, it may happen that the user needs to know {\em independently} the
orientation of its emission coordinates. Assuming that the user may observe the
relative positions of the four emitters on its celestial sphere, an
observational rule to determine this orientation is presented. The bifurcation
problem is thus solved by applying this observational rule, and consequently,
{\em all} of the parameters in the general expression of the coordinate
transformation from emission coordinates to inertial ones may be computed from
the data received by the user of the relativistic positioning system.Comment: 10 pages, 7 figures. The version published in PRD contains a misprint
in the caption of Figure 3, which is here amende
Positioning systems in Minkowski space-time: from emission to inertial coordinates
The coordinate transformation between emission coordinates and inertial
coordinates in Minkowski space-time is obtained for arbitrary configurations of
the emitters. It appears that a positioning system always generates two
different coordinate domains, namely, the front and the back emission
coordinate domains. For both domains, the corresponding covariant expression of
the transformation is explicitly given in terms of the emitter world-lines.
This task requires the notion of orientation of an emitter configuration. The
orientation is shown to be computable from the emission coordinates for the
users of a `central' region of the front emission coordinate domain. Other
space-time regions associated with the emission coordinates are also outlined.Comment: 20 pages; 1 figur
Neutrinos from supernovae: experimental status and perspectives
I discuss the state of the art in the search for neutrinos from galactic
stellar collapses and the future perspectives of this field. The implications
for the neutrino physics of a high statistics supernova neutrino burst
detection by the network of detectors operating around the world are also
reviewed.Comment: 19 pages, 12 figures. Extended version of talk given at IInd
International Workshop on Matter, Anti-Matter and Dark Matter, Trento
(Italy), 29-30 October 2001. A reduced version will appear in Int. J. of Mod.
Phys.
Evaluation of an urban NMHC emission inventory by measurements and impact on CTM results
This paper presents an evaluation of the consistency of an urban state-of-the-art hydrocarbon (HC) emission inventory. The evaluation was conducted through the comparison of this inventory with hourly HC measurements during two summer months in the centre of Marseille, on the Mediterranean French coast. Factors of under or overestimation could be calculated for each compound on the basis of a systematic HC to HC ratio analysis. These results, associated with a deep analysis of the speciation profiles, show that most of the common and highly concentrated hydrocarbons (such as butanes) are too much predominant in the emission speciation, while the heavy and less common species (branched alkanes, substituted aromatics) are under-represented in the inventory. The urban diffuse sources appear here as one critical point of the inventories. The disagreements were shown to have a strong incidence on the representation of the air mass reactivity. In a last step, the identified uncertainties in emissions were implemented in an air-quality model for sensitivity studies. It was shown that the observed biases in the inventory could affect the regional ozone production, with a probable impact on ozone peaks of 2-10 ppbv over the area. © 2010 Elsevier Ltd
Local thermal equilibrium and ideal gas Stephani universes
The Stephani universes that can be interpreted as an ideal gas evolving in
local thermal equilibrium are determined. Five classes of thermodynamic schemes
are admissible, which give rise to five classes of regular models and three
classes of singular models. No Stephani universes exist representing an exact
solution to a classical ideal gas (one for which the internal energy is
proportional to the temperature). But some Stephani universes may approximate a
classical ideal gas at first order in the temperature: all of them are
obtained. Finally, some features about the physical behavior of the models are
pointed out.Comment: 20 page
- …