52 research outputs found

    SOOT FORMATION IN LAMINAR DIFFUSION FLAMES SOOT FORMATION IN LAMINAR DIFFUSION FLAMES

    No full text
    Abstract Laminar, sooting, coflow diffusion flames at atmospheric pressure have been studied experimentally and theoretically as a function of fuel dilution by inert nitrogen. The flames have been investigated with laser diagnostics. Laser extinction has been used to calibrate the experimental soot volume fractions and an improved gating method has been implemented in the laser-induced incandescence (LII) measurements resulting in differences to the soot distributions reported previously. Numerical simulations have been based on a fully-coupled solution of the flow conservation equations, gas-phase species conservation equations with complex chemistry, and the dynamical equations for soot spheroid growth. The model also includes the effects of radiation reabsorption through an iterative procedure. An investigation of the computed rates of particle inception, surface growth and oxidation, along with a residence time analysis, helps explain the shift in the peak soot volume fraction from the centerline to the wings of the flame as the fuel fraction increases. The shift arises from changes in the relative importance of inception and surface growth combined with a significant increase in the residence time within the annular soot formation field leading to higher soot volume fractions, as the fuel fraction increases

    Fuel additive effects on soot across a suite of laboratory devices, part 2: Nitroalkanes

    No full text
    This is the second in a series of papers to summarize results of the impact of nonmetallic fuel additives on soot. The research was conducted by a university, industry, and government team with the primary objective of obtaining fundamental understanding of the mechanisms through which additive compounds blended into a fuel affect soot emissions. The work involved coordinated testing across a suite of laboratory devices: a shock tube, a well-stirred reactor, a premixed flat flame, an opposed-jet diffusion flame, and a high-pressure turbulent reactor. This article summarizes results on the addition of nitroalkanes to a base fuel consisting of n-heptane and toluene as a simple surrogate for jet fuels. In these experiments, the nitroalkanes serve as chemical probes of key reactions leading to soot. The effects of nitroalkane addition on soot were found to be device and condition dependent with no simple trends across the suite of devices. Copyright © Taylor & Francis Group, LLC

    Large Eddy Simulation of Soot Formation in Turbulent Premixed Flames

    No full text
    corecore