143 research outputs found

    Learning Hard Alignments with Variational Inference

    Full text link
    There has recently been significant interest in hard attention models for tasks such as object recognition, visual captioning and speech recognition. Hard attention can offer benefits over soft attention such as decreased computational cost, but training hard attention models can be difficult because of the discrete latent variables they introduce. Previous work used REINFORCE and Q-learning to approach these issues, but those methods can provide high-variance gradient estimates and be slow to train. In this paper, we tackle the problem of learning hard attention for a sequential task using variational inference methods, specifically the recently introduced VIMCO and NVIL. Furthermore, we propose a novel baseline that adapts VIMCO to this setting. We demonstrate our method on a phoneme recognition task in clean and noisy environments and show that our method outperforms REINFORCE, with the difference being greater for a more complicated task

    Reward-Augmented Decoding: Efficient Controlled Text Generation With a Unidirectional Reward Model

    Full text link
    While large language models have proven effective in a huge range of downstream applications, they often generate text that is problematic or lacks a desired attribute. In this paper, we introduce Reward-Augmented Decoding (RAD), a text generation procedure that uses a small unidirectional reward model to encourage a language model to generate text that has certain properties. Specifically, RAD uses the reward model to score generations as they are produced and rescales sampling probabilities to favor high-reward tokens. By using a unidirectional reward model, RAD can cache activations from prior generation steps to decrease computational overhead. Through experiments on generating non-toxic and sentiment-controlled text, we demonstrate that RAD performs best among methods that change only the generation procedure and matches the performance of state-of-the-art methods that involve re-training the language model. We further validate that RAD is effective on very large language models while incurring a minimal computational overhead
    corecore