54 research outputs found

    Working memory dynamics and spontaneous activity in a flip-flop oscillations network model with a Milnor attractor

    Get PDF
    Many cognitive tasks require the ability to maintain and manipulate simultaneously several chunks of information. Numerous neurobiological observations have reported that this ability, known as the working memory, is associated with both a slow oscillation (leading to the up and down states) and the presence of the theta rhythm. Furthermore, during resting state, the spontaneous activity of the cortex exhibits exquisite spatiotemporal patterns sharing similar features with the ones observed during specific memory tasks. Here to enlighten neural implication of working memory under these complicated dynamics, we propose a phenomenological network model with biologically plausible neural dynamics and recurrent connections. Each unit embeds an internal oscillation at the theta rhythm which can be triggered during up-state of the membrane potential. As a result, the resting state of a single unit is no longer a classical fixed point attractor but rather the Milnor attractor, and multiple oscillations appear in the dynamics of a coupled system. In conclusion, the interplay between the up and down states and theta rhythm endows high potential in working memory operation associated with complexity in spontaneous activities

    Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages

    Get PDF
    BACKGROUND: With an abundant amount of microarray gene expression data sets available through public repositories, new possibilities lie in combining multiple existing data sets. In this new context, analysis itself is no longer the problem, but retrieving and consistently integrating all this data before delivering it to the wide variety of existing analysis tools becomes the new bottleneck. RESULTS: We present the newly released inSilicoMerging R/Bioconductor package which, together with the earlier released inSilicoDb R/Bioconductor package, allows consistent retrieval, integration and analysis of publicly available microarray gene expression data sets. Inside the inSilicoMerging package a set of five visual and six quantitative validation measures are available as well. CONCLUSIONS: By providing (i) access to uniformly curated and preprocessed data, (ii) a collection of techniques to remove the batch effects between data sets from different sources, and (iii) several validation tools enabling the inspection of the integration process, these packages enable researchers to fully explore the potential of combining gene expression data for downstream analysis. The power of using both packages is demonstrated by programmatically retrieving and integrating gene expression studies from the InSilico DB repository [https://insilicodb.org/app/]

    Storing information through complex dynamics in recurrent neural networks

    No full text
    The neural net computer simulations which will be presented here are based on the acceptance of a set of assumptions that for the last twenty years have been expressed in the fields of information processing, neurophysiology and cognitive sciences. First of all, neural networks and their dynamical behaviors in terms of attractors is the natural way adopted by the brain to encode information. Any information item to be stored in the neural net should be coded in some way or another in one of the dynamical attractors of the brain and retrieved by stimulating the net so as to trap its dynamics in the desired item's basin of attraction. The second view shared by neural net researchers is to base the learning of the synaptic matrix on a local Hebbian mechanism. The last assumption is the presence of chaos and the benefit gained by its presence. Chaos, although very simply produced, inherently possesses an infinite amount of cyclic regimes that can be exploited for coding information. Moreover, the network randomly wanders around these unstable regimes in a spontaneous way, thus rapidly proposing alternative responses to external stimuli and being able to easily switch from one of these potential attractors to another in response to any coming stimulus.In this thesis, it is shown experimentally that the more information is to be stored in robust cyclic attractors, the more chaos appears as a regime in the back, erratically itinerating among brief appearances of these attractors. Chaos does not appear to be the cause but the consequence of the learning. However, it appears as an helpful consequence that widens the net's encoding capacity. To learn the information to be stored, an unsupervised Hebbian learning algorithm is introduced. By leaving the semantics of the attractors to be associated with the feeding data unprescribed, promising results have been obtained in term of storing capacity.Doctorat en sciences appliquéesinfo:eu-repo/semantics/nonPublishe

    Theta phase precession for spatial representation in the entorhinal-dentate gyrus-ca3 network

    No full text
    info:eu-repo/semantics/publishe

    Learning cycles brings chaos in continuous hopfield networks

    No full text
    IJCNNinfo:eu-repo/semantics/publishe

    How chaos in small hopfield networks makes sense of the world

    No full text
    info:eu-repo/semantics/publishe

    Impact of temporal coding of presynaptic entorhinal cortex grid cells on the formation of hippocampal place fields

    No full text
    http://www.ncbi.nlm.nih.gov/pubmed/18...info:eu-repo/semantics/publishe

    How entorhinal phase precession sculpts place fields

    No full text
    info:eu-repo/semantics/publishe
    corecore