3 research outputs found
Fluid observers and tilting cosmology
We study perfect fluid cosmological models with a constant equation of state
parameter in which there are two naturally defined time-like
congruences, a geometrically defined geodesic congruence and a non-geodesic
fluid congruence. We establish an appropriate set of boost formulae relating
the physical variables, and consequently the observed quantities, in the two
frames. We study expanding spatially homogeneous tilted perfect fluid models,
with an emphasis on future evolution with extreme tilt. We show that for
ultra-radiative equations of state (i.e., ), generically the tilt
becomes extreme at late times and the fluid observers will reach infinite
expansion within a finite proper time and experience a singularity similar to
that of the big rip. In addition, we show that for sub-radiative equations of
state (i.e., ), the tilt can become extreme at late times and
give rise to an effective quintessential equation of state. To establish the
connection with phantom cosmology and quintessence, we calculate the effective
equation of state in the models under consideration and we determine the future
asymptotic behaviour of the tilting models in the fluid frame variables using
the boost formulae. We also discuss spatially inhomogeneous models and tilting
spatially homogeneous models with a cosmological constant