6,644 research outputs found
Getting the Measure of the Flatness Problem
The problem of estimating cosmological parameters such as from noisy
or incomplete data is an example of an inverse problem and, as such, generally
requires a probablistic approach. We adopt the Bayesian interpretation of
probability for such problems and stress the connection between probability and
information which this approach makes explicit.
This connection is important even when information is ``minimal'' or, in
other words, when we need to argue from a state of maximum ignorance. We use
the transformation group method of Jaynes to assign minimally--informative
prior probability measure for cosmological parameters in the simple example of
a dust Friedman model, showing that the usual statements of the cosmological
flatness problem are based on an inappropriate choice of prior. We further
demonstrate that, in the framework of a classical cosmological model, there is
no flatness problem.Comment: 11 pages, submitted to Classical and Quantum Gravity, Tex source
file, no figur
Bias and Hierarchical Clustering
It is now well established that galaxies are biased tracers of the
distribution of matter, although it is still not known what form this bias
takes. In local bias models the propensity for a galaxy to form at a point
depends only on the overall density of matter at that point. Hierarchical
scaling arguments allow one to build a fully-specified model of the underlying
distribution of matter and to explore the effects of local bias in the regime
of strong clustering. Using a generating-function method developed by
Bernardeau & Schaeffer (1992), we show that hierarchical models lead one
directly to the conclusion that a local bias does not alter the shape of the
galaxy correlation function relative to the matter correlation function on
large scales. This provides an elegant extension of a result first obtained by
Coles (1993) for Gaussian underlying fields and confirms the conclusions of
Scherrer & Weinberg (1998) obtained using a different approach. We also argue
that particularly dense regions in a hierarchical density field display a form
of bias that is different from that obtained by selecting such peaks in
Gaussian fields: they are themselves hierarchically distributed with scaling
parameters . This kind of bias is also factorizable, thus in
principle furnishing a simple test of this class of models.Comment: Latex, accepted for publication in ApJL; moderate revision
Modeling the impact of iron and phosphorus limitations on nitrogen fixation in the Atlantic Ocean
International audienceThe overarching goal of this study is to simulate subsurface N* (sensu, Gruber and Sarmiento, 1997) anomaly patterns in the North Atlantic Ocean and determine the basin wide rates of N2 fixation that are required to do so. We present results from an Atlantic implementation of a coupled physical-biogeochemical model that includes an explicit, dynamic representation of N2 fixation with light, nitrogen, phosphorus and iron limitations, and variable stoichiometric ratios. The model is able to reproduce nitrogen, phosphorus and iron concentration variability to first order. The latter is achieved by incorporating iron deposition directly into the model's detritus compartment which allows the model to reproduce sharp near surface gradients in dissolved iron concentration off the west coast of Africa and deep dissolved iron concentrations that have been observed in recent observational studies. The model can reproduce the large scale N* anomaly patterns but requires relatively high rates of surface nitrogen fixation to do so (1.8Ă1012 moles N yr?1 from 10° N?30° N, 3.4Ă1012 moles N y
Phase diagram of a dilute ferromagnet model with antiferromagnetic next-nearest-neighbor interactions
We have studied the spin ordering of a dilute classical Heisenberg model with
spin concentration , and with ferromagnetic nearest-neighbor interaction
and antiferromagnetic next-nearest-neighbor interaction . Magnetic
phases at absolute zero temperature are determined examining the
stiffness of the ground state, and those at finite temperatures are
determined calculating the Binder parameter and the spin correlation
length . Three ordered phases appear in the phase diagram: (i) the
ferromagnetic (FM) phase; (ii) the spin glass (SG) phase; and (iii) the mixed
(M) phase of the FM and the SG. Near below the ferromagnetic threshold , a reentrant SG transition occurs. That is, as the temperature is decreased
from a high temperature, the FM phase, the M phase and the SG phase appear
successively. The magnetization which grows in the FM phase disappears in the
SG phase. The SG phase is suggested to be characterized by ferromagnetic
clusters. We conclude, hence, that this model could reproduce experimental
phase diagrams of dilute ferromagnets FeAu and EuSrS.Comment: 9 pages, 23 figure
Theory of Parabolic Arcs in Interstellar Scintillation Spectra
Our theory relates the secondary spectrum, the 2D power spectrum of the radio
dynamic spectrum, to the scattered pulsar image in a thin scattering screen
geometry. Recently discovered parabolic arcs in secondary spectra are generic
features for media that scatter radiation at angles much larger than the rms
scattering angle. Each point in the secondary spectrum maps particular values
of differential arrival-time delay and fringe rate (or differential Doppler
frequency) between pairs of components in the scattered image. Arcs correspond
to a parabolic relation between these quantities through their common
dependence on the angle of arrival of scattered components. Arcs appear even
without consideration of the dispersive nature of the plasma. Arcs are more
prominent in media with negligible inner scale and with shallow wavenumber
spectra, such as the Kolmogorov spectrum, and when the scattered image is
elongated along the velocity direction. The arc phenomenon can be used,
therefore, to constrain the inner scale and the anisotropy of scattering
irregularities for directions to nearby pulsars. Arcs are truncated by finite
source size and thus provide sub micro arc sec resolution for probing emission
regions in pulsars and compact active galactic nuclei. Multiple arcs sometimes
seen signify two or more discrete scattering screens along the propagation
path, and small arclets oriented oppositely to the main arc persisting for long
durations indicate the occurrence of long-term multiple images from the
scattering screen.Comment: 22 pages, 11 figures, submitted to the Astrophysical Journa
Nonlinear stochastic biasing from the formation epoch distribution of dark halos
We propose a physical model for nonlinear stochastic biasing of one-point
statistics resulting from the formation epoch distribution of dark halos. In
contrast to previous works on the basis of extensive numerical simulations, our
model provides for the first time an analytic expression for the joint
probability function. Specifically we derive the joint probability function of
halo and mass density contrasts from the extended Press-Schechter theory. Since
this function is derived in the framework of the standard gravitational
instability theory assuming the random-Gaussianity of the primordial density
field alone, we expect that the basic features of the nonlinear and stochastic
biasing predicted from our model are fairly generic. As representative
examples, we compute the various biasing parameters in cold dark matter models
as a function of a redshift and a smoothing length. Our major findings are (1)
the biasing of the variance evolves strongly as redshift while its
scale-dependence is generally weak and a simple linear biasing model provides a
reasonable approximation roughly at R\simgt 2(1+z)\himpc, and (2) the
stochasticity exhibits moderate scale-dependence especially on R\simlt
20\himpc, but is almost independent of . Comparison with the previous
numerical simulations shows good agreement with the above behavior, indicating
that the nonlinear and stochastic nature of the halo biasing is essentially
understood by taking account of the distribution of the halo mass and the
formation epoch.Comment: 34 pages, 11 figures, ApJ (2000) in pres
Computational Study of Turbulent-Laminar Patterns in Couette Flow
Turbulent-laminar patterns near transition are simulated in plane Couette
flow using an extension of the minimal flow unit methodology. Computational
domains are of minimal size in two directions but large in the third. The long
direction can be tilted at any prescribed angle to the streamwise direction.
Three types of patterned states are found and studied: periodic, localized, and
intermittent. These correspond closely to observations in large aspect ratio
experiments.Comment: 4 pages, 5 figure
A Counts-in-Cells Analysis of Lyman-break Galaxies at z~3
We have measured the counts-in-cells fluctuations of 268 Lyman-break galaxies
with spectroscopic redshifts in six 9 arcmin by 9 arcmin fields at z~3. The
variance of galaxy counts in cubes of comoving side length 7.7, 11.9, 11.4
h^{-1} Mpc is \sigma_{gal}^2 ~ 1.3\pm0.4 for \Omega_M=1, 0.2 open, 0.3 flat,
implying a bias on these scales of \sigma_{gal} / \sigma_{mass} = 6.0\pm1.1,
1.9\pm0.4, 4.0\pm0.7. The bias and abundance of Lyman-break galaxies are
surprisingly consistent with a simple model of structure formation which
assumes only that galaxies form within dark matter halos, that Lyman-break
galaxies' rest-UV luminosities are tightly correlated with their dark masses,
and that matter fluctuations are Gaussian and have a linear power-spectrum
shape at z~3 similar to that determined locally (\Gamma~0.2). This conclusion
is largely independent of cosmology or spectral normalization \sigma_8. A
measurement of the masses of Lyman-break galaxies would in principle
distinguish between different cosmological scenarios.Comment: Accepted for publication in ApJ, 16 pages including 4 figure
Testing Gaussian random hypothesis with the cosmic microwave background temperature anisotropies in the three-year WMAP data
We test the hypothesis that the temperature of the cosmic microwave
background is consistent with a Gaussian random field defined on the celestial
sphere, using de-biased internal linear combination (DILC) map produced from
the 3-year WMAP data. We test the phases for spherical harmonic modes with l <=
10 (which should be the cleanest) for their uniformity, randomness, and
correlation with those of the foreground templates. The phases themselves are
consistent with a uniform distribution, but not for l <= 5, and the differences
between phases are not consistent with uniformity. For l=3 and l=6, the phases
of the CMB maps cross-correlate with the foregrounds, suggestion the presence
of residual contamination in the DLC map even on these large scales. We also
use a one-dimensional Fourier representation to assemble a_lm into the \Delta
T_l(\phi) for each l mode, and test the positions of the resulting maxima and
minima for consistency with uniformity randomness on the unit circle. The
results show significant departures at the 0.5% level, with the one-dimensional
peaks being concentrated around \phi=180 degs. This strongly significant
alignment with the Galactic meridian, together with the cross-correlation of
DILC phases with the foreground maps, strongly suggests that even the lowest
spherical harmonic modes in the map are significantly contaminated with
foreground radiation.Comment: submitted to ApJL, one paragraph is added in Section 3 and some more
in the Referenc
- âŠ