183 research outputs found
Variation of elastic scattering across a quantum well
The Drude scattering times of electrons in two subbands of a parabolic
quantum well have been studied at constant electron sheet density and different
positions of the electron distribution along the growth direction. The
scattering times obtained by magnetotransport measurements decrease as the
electrons are displaced towards the well edges, although the lowest-subband
density increases. By comparing the measurements with calculations of the
scattering times of a two-subband system, new information on the location of
the relevant scatterers and the anisotropy of intersubband scattering is
obtained. It is found that the scattering time of electrons in the lower
subband depends sensitively on the position of the scatterers, which also
explains the measured dependence of the scattering on the carrier density. The
measurements indicate segregation of scatterers from the substrate side towards
the quantum well during growth.Comment: 4 pages, 4 figure
Semiclassical theory of transport in a random magnetic field
We study the semiclassical kinetics of 2D fermions in a smoothly varying
magnetic field . The nature of the transport depends crucially on
both the strength of the random component of and its mean
value . For , the governing parameter is ,
where is the correlation length of disorder and is the Larmor radius
in the field . While for the Drude theory applies, at
most particles drift adiabatically along closed contours and are
localized in the adiabatic approximation. The conductivity is then determined
by a special class of trajectories, the "snake states", which percolate by
scattering at the saddle points of where the adiabaticity of their
motion breaks down. The external field also suppresses the diffusion by
creating a percolation network of drifting cyclotron orbits. This kind of
percolation is due only to a weak violation of the adiabaticity of the
cyclotron rotation, yielding an exponential drop of the conductivity at large
. In the regime the crossover between the snake-state
percolation and the percolation of the drift orbits with increasing
has the character of a phase transition (localization of snake states) smeared
exponentially weakly by non-adiabatic effects. The ac conductivity also
reflects the dynamical properties of particles moving on the fractal
percolation network. In particular, it has a sharp kink at zero frequency and
falls off exponentially at higher frequencies. We also discuss the nature of
the quantum magnetooscillations. Detailed numerical studies confirm the
analytical findings. The shape of the magnetoresistivity at is
in good agreement with experimental data in the FQHE regime near .Comment: 22 pages REVTEX, 14 figure
Thermodynamic Signature of a Two-Dimensional Metal-Insulator Transition
We present a study of the compressibility, K, of a two-dimensional hole
system which exhibits a metal-insulator phase transition at zero magnetic
field. It has been observed that dK/dp changes sign at the critical density for
the metal-insulator transition. Measurements also indicate that the insulating
phase is incompressible for all values of B. Finally, we show how the phase
transition evolves as the magnetic field is varied and construct a phase
diagram in the density-magnetic field plane for this system.Comment: 4 pages, 4 figures, submitted to Physical Review Letters; version 1
is identical to version 2 but didn't compile properl
Tunneling Between Parallel Two-Dimensional Electron Gases
The tunneling between two parallel two-dimensional electron gases has been
investigated as a function of temperature , carrier density , and the
applied perpendicular magnetic field . In zero magnetic field the
equilibrium resonant lineshape is Lorentzian, reflecting the Lorentzian form of
the spectral functions within each layer. From the width of the tunneling
resonance the lifetime of the electrons within a 2DEG has been measured as a
function of and , giving information about the density dependence of the
electron-impurity scattering and the temperature dependence of the
electron-electron scattering. In a magnetic field there is a general
suppression of equilibrium tunneling for fields above T. A gap in the
tunneling density of states has been measured over a wide range of magnetic
fields and filling factors, and various theoretical predictions have been
examined. In a strong magnetic field, when there is only one partially filled
Landau level in each layer, the temperature dependence of the conductance
characteristics has been modeled with a double-Gaussian spectral density.Comment: LaTeX requires REVTeX macros. Eighteen pages. Fourteen postscript
figures are included. (All figures have been bitmapped to save space. The
original can be requested by email from [email protected]). Accepted for
publication in Phys. Rev.
On the Theory of Metal-Insulator Transitions in Gated Semiconductors
It is shown that recent experiments indicating a metal-insulator transition
in 2D electron systems can be interpreted in terms of a simple model, in which
the resistivity is controlled by scattering at charged hole traps located in
the oxide layer. The gate voltage changes the number of charged traps which
results in a sharp change in the resistivity. The observed exponential
temperature dependence of the resistivity in the metallic phase of the
transition follows from the temperature dependence of the trap occupation
number. The model naturally describes the experimentally observed scaling
properties of the transition and effects of magnetic and electric fields.Comment: 4 two-column pages, 4 figures (included in the text
Dephasing time of composite fermions
We study the dephasing of fermions interacting with a fluctuating transverse
gauge field. The divergence of the imaginary part of the fermion self energy at
finite temperatures is shown to result from a breakdown of Fermi's golden rule
due to a faster than exponential decay in time. The strong dephasing affects
experiments where phase coherence is probed. This result is used to describe
the suppression of Shubnikov-de Haas (SdH) oscillations of composite fermions
(oscillations in the conductivity near the half-filled Landau level). We find
that it is important to take into account both the effect of dephasing and the
mass renormalization. We conclude that while it is possible to use the
conventional theory to extract an effective mass from the temperature
dependence of the SdH oscillations, the resulting effective mass differs from
the of the quasiparticle in Fermi liquid theory.Comment: 14 pages, RevTeX 3.0, epsf, 1 EPS figur
Collapse of Spin-Splitting in the Quantum Hall Effect
It is known experimentally that at not very large filling factors the
quantum Hall conductivity peaks corresponding to the same Landau level number
and two different spin orientations are well separated. These peaks occur
at half-integer filling factors and so that
the distance between them is unity. As increases
shrinks. Near certain two peaks abruptly merge into a single peak at
. We argue that this collapse of the spin-splitting at low
magnetic fields is attributed to the disorder-induced destruction of the
exchange enhancement of the electron -factor. We use the mean-field approach
to show that in the limit of zero Zeeman energy experiences a
second-order phase transition as a function of the magnetic field. We give
explicit expressions for in terms of a sample's parameters. For example,
we predict that for high-mobility heterostructures where is the spacer width, is the density of the
two-dimensional electron gas, and is the two-dimensional density of
randomly situated remote donors.Comment: 14 pages, compressed Postscript fil
Apparent Metallic Behavior at B = 0 of a two-dimensional electron system in AlAs
We report the observation of metallic-like behavior at low temperatures and
zero magnetic field in two dimensional (2D) electrons in an AlAs quantum well.
At high densities the resistance of the sample decreases with decreasing
temperature, but as the density is reduced the behavior changes to insulating,
with the resistance increasing as the temperature is decreased. The effect is
similar to that observed in 2D electrons in Si-MOSFETs, and in 2D holes in SiGe
and GaAs, and points to the generality of this phenomenon
- …