4 research outputs found
Role of the peripheral nervous system in skeletal development and regeneration: Controversies and clinical implications
PURPOSE OF REVIEW: This review examines the diverse functional relationships that exist between the peripheral nervous system (PNS) and bone, including key advances over the past century that inform our efforts to translate these discoveries for skeletal repair.
RECENT FINDINGS: The innervation of the bone during development, homeostasis, and regeneration is highly patterned. Consistent with this, there have been nearly 100 studies over the past century that have used denervation approaches to isolate the effects of the different branches of the PNS on the bone. Overall, a common theme of balance emerges whereby an orchestration of both local and systemic neural functions must align to promote optimal skeletal repair while limiting negative consequences such as pain. An improved understanding of the functional bidirectional pathways linking the PNS and bone has important implications for skeletal development and regeneration. Clinical advances over the next century will necessitate a rigorous identification of the mechanisms underlying these effects that is cautious not to oversimplify the in vivo condition in diverse states of health and disease
RAISING is a high-performance method for identifying random transgene integration sites
Both natural viral infections and therapeutic interventions using viral vectors pose significant risks of malignant transformation. Monitoring for clonal expansion of infected cells is important for detecting cancer. Here we developed a novel method of tracking clonality via the detection of transgene integration sites. RAISING (Rapid Amplification of Integration Sites without Interference by Genomic DNA contamination) is a sensitive, inexpensive alternative to established methods. Its compatibility with Sanger sequencing combined with our CLOVA (Clonality Value) software is critical for those without access to expensive high throughput sequencing. We analyzed samples from 688 individuals infected with the retrovirus HTLV-1, which causes adult T-cell leukemia/lymphoma (ATL) to model our method. We defined a clonality value identifying ATL patients with 100% sensitivity and 94.8% specificity, and our longitudinal analysis also demonstrates the usefulness of ATL risk assessment. Future studies will confirm the broad applicability of our technology, especially in the emerging gene therapy sector
RAISING is a high-performance method for identifying random transgene integration sites
Both natural viral infections and therapeutic interventions using viral vectors pose significant risks of malignant transformation. Monitoring for clonal expansion of infected cells is important for detecting cancer. Here we developed a novel method of tracking clonality via the detection of transgene integration sites. RAISING (Rapid Amplification of Integration Sites without Interference by Genomic DNA contamination) is a sensitive, inexpensive alternative to established methods. Its compatibility with Sanger sequencing combined with our CLOVA (Clonality Value) software is critical for those without access to expensive high throughput sequencing. We analyzed samples from 688 individuals infected with the retrovirus HTLV-1, which causes adult T-cell leukemia/lymphoma (ATL) to model our method. We defined a clonality value identifying ATL patients with 100% sensitivity and 94.8% specificity, and our longitudinal analysis also demonstrates the usefulness of ATL risk assessment. Future studies will confirm the broad applicability of our technology, especially in the emerging gene therapy sector.Communications Biology, 5, art. no. 535; 202