25,906 research outputs found

    Power management and distribution considerations for a lunar base

    Get PDF
    Design philosophies and technology needs for the power management and distribution (PMAD) portion of a lunar base power system are discussed. A process is described whereby mission planners may proceed from a knowledge of the PMAD functions and mission performance requirements to a definition of design options and technology needs. Current research efforts at the NASA LRC to meet the PMAD system needs for a Lunar base are described. Based on the requirements, the lunar base PMAD is seen as best being accomplished by a utility like system, although with some additional demands including autonomous operation and scheduling and accurate, predictive modeling during the design process

    Effective 't Hooft-Polyakov monopoles from pure SU(3) gauge theory

    Full text link
    The well known topological monopoles originally investigated by 't Hooft and Polyakov are known to arise in classical Yang-Mills-Higgs theory. With a pure gauge theory it is known that the classical Yang-Mills field equation do not have such finite energy configurations. Here we argue that such configurations may arise in a semi-quantized Yang-Mills theory, where the original gauge group, SU(3), is reduced to a smaller gauge group, SU(2), and with some combination of the coset fields of the SU(3) to SU(2) reduction acting as effective scalar fields. The procedure is called semi-quantized since some of the original gauge fields are treated as quantum degrees of freedom, while others are postulated to be effectively described as classical degrees of freedom. Some speculation is offer on a possible connection between these monopole configurations and the confinement problem, and the nucleon spin puzzle.Comment: one error is correcte

    Information of Structures in Galaxy Distribution

    Full text link
    We introduce an information-theoretic measure, the Renyi information, to describe the galaxy distribution in space. We discuss properties of the information measure, and demonstrate its relationship with the probability distribution function and multifractal descriptions. Using the First Look Survey galaxy samples observed by the Infrared Array Camera onboard Spitzer Space Telescope, we present measurements of the Renyi information, as well as the counts-in-cells distribution and multifractal properties of galaxies in mid-infrared wavelengths. Guided by multiplicative cascade simulation based on a binomial model, we verify our measurements, and discuss the spatial selection effects on measuring information of the spatial structures. We derive structure scan functions at scales where selection effects are small for the Spitzer samples. We discuss the results, and the potential of applying the Renyi information to measuring other spatial structures.Comment: 25 pages, 8 figures, submitted to ApJ; To appear in The Astrophysical Journal 2006, 644, 678 (June 20th

    High Density Preheating Effects on Q-ball Decays and MSSM Inflation

    Full text link
    Non-perturbative preheating decay of post-inflationary condensates often results in a high density, low momenta, non-thermal gas. In the case where the non-perturbative classical evolution also leads to Q-balls, this effect shields them from instant dissociation, and may radically change the thermal history of the universe. For example, in a large class of inflationary scenarios, motivated by the MSSM and its embedding in string theory, the reheat temperature changes by a multiplicative factor of 101210^{12}.Comment: 4 page

    Modeling river delta formation

    Full text link
    A new model to simulate the time evolution of river delta formation process is presented. It is based on the continuity equation for water and sediment flow and a phenomenological sedimentation/ erosion law. Different delta types are reproduced using different parameters and erosion rules. The structures of the calculated patterns are analyzed in space and time and compared with real data patterns. Furthermore our model is capable to simulate the rich dynamics related to the switching of the mouth of the river delta. The simulation results are then compared with geological records for the Mississippi river

    No supercritical supercurvature mode conjecture in one-bubble open inflation

    Get PDF
    In the path integral approach to false vacuum decay with the effect of gravity, there is an unsolved problem, called the negative mode problem. We show that the appearance of a supercritical supercurvature mode in the one-bubble open inflation scenario is equivalent to the existence of a negative mode around the Euclidean bounce solution. Supercritical supercurvature modes are those whose mode functions diverge exponentially for large spatial radius on the time constant hypersurface of the open universe. Then we propose a conjecture that there should be ``no supercritical supercurvature mode''. For a class of models that contains a wide variety of tunneling potentials, this conjecture is shown to be correct.Comment: 11 pages, 3 postscript figures, tarred, gzipped. submitted to Phys. Rev. D1

    Instanton Calculus of Lifshitz Tails

    Get PDF
    For noninteracting particles moving in a Gaussian random potential, there exists a disagreement in the literature on the asymptotic expression for the density of states in the tail of the band. We resolve this discrepancy. Further we illuminate the physical facet of instantons appearing in replica and supersymmetric derivations with another derivation employing a Lagrange multiplier field.Comment: 5 page

    Universal Properties of Two-Dimensional Boson Droplets

    Full text link
    We consider a system of N nonrelativistic bosons in two dimensions, interacting weakly via a short-range attractive potential. We show that for N large, but below some critical value, the properties of the N-boson bound state are universal. In particular, the ratio of the binding energies of (N+1)- and N-boson systems, B_{N+1}/B_N, approaches a finite limit, approximately 8.567, at large N. We also confirm previous results that the three-body system has exactly two bound states. We find for the ground state B_3^(0) = 16.522688(1) B_2 and for the excited state B_3^(1) = 1.2704091(1) B_2.Comment: 4 pages, 2 figures, final versio

    High Temperature Superfluid and Feshbach Resonance

    Full text link
    We study an effective field theory describing cold fermionic atoms near a Feshbach resonance. The theory gives a unique description of the dynamics in the limit that the energy of the Feshbach resonance is tuned to be twice that of the Fermi surface. We show that in this limit the zero temperature superfluid condensate is of order the Fermi energy, and obtain a critical temperature TC0.43TFT_C \simeq 0.43 T_FComment: 9 pages, 3 figures, RevTe
    corecore