263 research outputs found

    Predictions from Quantum Cosmology

    Get PDF
    The world view suggested by quantum cosmology is that inflating universes with all possible values of the fundamental constants are spontaneously created out of nothing. I explore the consequences of the assumption that we are a `typical' civilization living in this metauniverse. The conclusions include inflation with an extremely flat potential and low thermalization temperature, structure formation by topological defects, and an appreciable cosmological constant.Comment: (revised version), 15 page

    Emergence of Skyrme crystal in Gross-Neveu and 't Hooft models at finite density

    Get PDF
    We study two-dimensional, large NN field theoretic models (Gross-Neveu model, 't Hooft model) at finite baryon density near the chiral limit. The same mechanism which leads to massless baryons in these models induces a breakdown of translational invariance at any finite density. In the chiral limit baryonic matter is characterized by a spatially varying chiral angle with a wave number depending only on the density. For small bare quark masses a sine-Gordon kink chain is obtained which may be regarded as simplest realization of the Skyrme crystal for nuclear matter. Characteristic differences between confining and non-confining models are pointed out.Comment: 27 pages, 11 figures, added reference, corrected sig

    Emergency department utilization after hospitalization discharge for acute stroke: The COMprehensive Post-Acute Stroke Services (COMPASS) study

    Get PDF
    Each year nearly 800,000 people in the United States experience a stroke. Those that survive are at high risk for complications after hospital discharge. Providing appropriate care during the recovery from this complex condition is a challenge for patients, caregivers, and health care providers. Understanding emergency department (ED) utilization after a stroke may provide insights into long-term management of stroke, inform interventions, improve patient outcomes, and reduce medical costs. A comprehensive transitional care model for post-acute stroke care may influence the need to seek ED care for downstream events after a stroke. To date, most transitional care trials exploring post-stroke healthcare utilization were conducted outside of the U.S. health-care system. We examined data from the Comprehensive Post-Acute Stroke Services (COMPASS) study, a cluster-randomized pragmatic trial of a post-discharge transitional care model for stroke survivors and their caregivers compared with usual care

    Categorizing Different Approaches to the Cosmological Constant Problem

    Full text link
    We have found that proposals addressing the old cosmological constant problem come in various categories. The aim of this paper is to identify as many different, credible mechanisms as possible and to provide them with a code for future reference. We find that they all can be classified into five different schemes of which we indicate the advantages and drawbacks. Besides, we add a new approach based on a symmetry principle mapping real to imaginary spacetime.Comment: updated version, accepted for publicatio

    Implementation of a transitional care model for stroke: Perspectives from frontline clinicians, administrators, and COMPASS-TC implementation staff

    Get PDF
    Background and Objectives: Stroke is a chronic, complex condition that disproportionally affects older adults. Health systems are evaluating innovative transitional care (TC) models to improve outcomes in these patients. The Comprehensive Post-Acute Stroke Services (COMPASS) Study, a large cluster-randomized pragmatic trial, tested a TC model for patients with stroke or transient ischemic attack discharged home from the hospital. The implementation of COMPASS-TC in complex real-world settings was evaluated to identify successes and challenges with integration into the clinical workflow. Research Design and Methods: We conducted a concurrent process evaluation of COMPASS-TC implementation during the first year of the trial. Qualitative data were collected from 4 sources across 19 intervention hospitals. We analyzed transcripts from 43 conference calls with hospital clinicians, individual and group interviews with leaders and clinicians from 9 hospitals, and 2 interviews with the COMPASS-TC Director of Implementation using iterative thematic analysis. Themes were compared to the domains of the RE-AIM framework. Results: Organizational, individual, and community factors related to Reach, Adoption, and Implementation were identified. Organizational readiness was an additional key factor to successful implementation, in that hospitals that were not "organizationally ready" had more difficulty addressing implementation challenges. Discussion and Implications: Multifaceted TC models are challenging to implement. Facilitators of implementation were organizational commitment and capacity, prioritizing implementation of innovative delivery models to provide comprehensive care, being able to address challenges quickly, implementing systems for tracking patients throughout the intervention, providing clinicians with autonomy and support to address challenges, and adequately resourcing the intervention. Clinical Trial Registration: NCT02588664

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure

    Environmental monitoring : phase 5 final report (April 2019 - March 2020)

    Get PDF
    This report presents the results and interpretation for Phase 5 of an integrated environmental monitoring programme that is being undertaken around two proposed shale gas sites in England – Preston New Road, Lancashire and Kirby Misperton, North Yorkshire. The report should be read in conjunction with previous reports freely available through the project website1 . These provide additional background to the project, presentation of earlier results and the rationale for establishment of the different elements of the monitoring programme

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    corecore