2,318 research outputs found

    Process evaluation of a school based physical activity related injury prevention programme using the RE-AIM framework

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In general, only information regarding the effectiveness of an intervention programme is ever published. However, in recent years evaluating the translatability and feasibility of an intervention programme has become more important. Therefore, this paper presents the results of the evaluation of the iPlay programme aimed at preventing physical activity related injuries in primary school children.</p> <p>Methods</p> <p>The iPlay programme targeted injuries gained through physical activity, and consisted of a teacher's manual, informative newsletters and posters, a website, and set exercises to be carried out during physical education (PE) classes. In order to evaluate the iPlay programme for translatability and feasibility, teachers, children and parents who participated in the iPlay programme filled out a questionnaire</p> <p>The objective of this study is to describe the results of the process-evaluation of the iPlay programme based on the five dimensions of the RE-AIM framework.</p> <p>Results</p> <p>The results showed that the participation rate of the children was 100% (reach). Nine percent of the schools who were invited to take part were willing to participate in the study (adoption rate). Teachers stated that they implemented the different elements of the programme partly as intended (implementation). The percentage of children and parents who followed the programme was less than expected. In addition, 52% of the teachers indicated that the current iPlay programme could become standard practice in their teaching routine (maintenance).</p> <p>Conclusion</p> <p>The iPlay programme is a first start in the prevention of physical activity related injuries in children, but further improvements need to be made to the programme on the basis of this process evaluation.</p> <p>Trial registration</p> <p>ISRCTN78846684; <url>http://www.controlled-trials.com</url></p

    Is adolescent body mass index and waist circumference associated with the food environments surrounding schools and homes? A longitudinal analysis

    Get PDF
    Background: There has been considerable interest in the role of access to unhealthy food options as a determinant of weight status. There is conflict across the literature as to the existence of such an association, partly due to the dominance of cross-sectional study designs and inconsistent definitions of the food environment. The aim of our study is to use longitudinal data to examine if features of the food environment are associated to measures of adolescent weight status. Methods: Data were collected from secondary schools in Leeds (UK) and included measurements at school years 7 (ages 11/12), 9 (13/14), and 11 (15/16). Outcome variables, for weight status, were standardised body mass index and standardised waist circumference. Explanatory variables included the number of fast food outlets, supermarkets and ‘other retail outlets’ located within a 1 km radius of an individual’s home or school, and estimated travel route between these locations (with a 500 m buffer). Multi-level models were fit to analyse the association (adjusted for confounders) between the explanatory and outcome variables. We also examined changes in our outcome variables between each time period. Results: We found few associations between the food environment and measures of adolescent weight status. Where significant associations were detected, they mainly demonstrated a positive association between the number of amenities and weight status (although effect sizes were small). Examining changes in weight status between time periods produced mainly non-significant or inconsistent associations. Conclusions: Our study found little consistent evidence of an association between features of the food environment and adolescent weight status. It suggests that policy efforts focusing on the food environment may have a limited effect at tackling the high prevalence of obesity if not supported by additional strategies

    Microbial ligand costimulation drives neutrophilic steroid-refractory asthma

    Get PDF
    Funding: The authors thank the Wellcome Trust (102705) and the Universities of Aberdeen and Cape Town for funding. This research was also supported, in part, by National Institutes of Health GM53522 and GM083016 to DLW. KF and BNL are funded by the Fonds Wetenschappelijk Onderzoek, BNL is the recipient of an European Research Commission consolidator grant and participates in the European Union FP7 programs EUBIOPRED and MedALL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Engaging Undergraduates in Science Research: Not Just About Faculty Willingness.

    Get PDF
    Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members' decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty members' likelihood of engaging undergraduates in their research project(s). Using data from the Higher Education Research Institute's 2007-2008 Faculty Survey, we employ hierarchical generalized linear modeling to analyze data from 4,832 science, technology, engineering, and mathematics (STEM) faculty across 194 institutions to examine how organizational citizenship behavior theory and social exchange theory relate to mentoring students in research. Key findings show that faculty who work in the life sciences and those who receive government funding for their research are more likely to involve undergraduates in their research project(s). In addition, faculty at liberal arts or historically Black colleges are significantly more likely to involve undergraduate students in research. Implications for advancing undergraduate research opportunities are discussed

    Overweight across the life course and adipokines, inflammatory and endothelial markers at age 60-64 years: evidence from the 1946 birth cohort.

    Get PDF
    BACKGROUND/OBJECTIVES: There is growing evidence that early development of obesity increases cardiovascular risk later in life, but less is known about whether there are effects of long-term excess body weight on the biological drivers associated with the atherosclerotic pathway, particularly adipokines, inflammatory and endothelial markers. This paper therefore investigates the influence of overweight across the life course on levels of these markers at retirement age. SUBJECTS/METHODS: Data from the Medical Research Council National Survey of Health and Development (n=1784) were used to examine the associations between overweight status at 2, 4, 6, 7, 11, 15, 20, 26, 36, 43, 53 and 60-64 years (body mass index (BMI)⩾25 kg m(-2) for adult ages and gender-specific cut-points for childhood ages equivalent to BMI⩾25 kg m(-2)) and measurements of adipokines (leptin and adiponectin), inflammatory markers (C-reactive protein (CRP), interleukin-6 (IL-6)) and endothelial markers (E-selectin, tissue plasminogen activator (t-PA) and von Willebrand factor) at 60-64 years. In addition, the fit of different life course models (sensitive periods/accumulation) were compared using partial F-tests. RESULTS: In age- and sex-adjusted models, overweight at 11 years and onwards was associated with higher leptin, CRP and IL-6 and lower adiponectin; overweight at 15 years and onwards was associated with higher E-selectin and t-PA. Associations between overweight at all ages earlier than 60-64 with leptin, adiponectin, CRP and IL-6 were reduced but remained apparent after adjustment for overweight at 60-64 years; whereas those with E-selectin and t-PA were entirely explained. An accumulation model best described the associations between overweight across the life course with adipokines and inflammatory markers, whereas for the endothelial markers, the sensitive period model for 60-64 years provided a slightly better fit than the accumulation model. CONCLUSIONS: Overweight across the life course has a cumulative influence on adipokines, inflammatory and possibly endothelial markers. Avoidance of overweight from adolescence onwards is likely important for cardiovascular disease prevention

    Crystal Structure of a Charge Engineered Human Lysozyme Having Enhanced Bactericidal Activity

    Get PDF
    Human lysozyme is a key component of the innate immune system, and recombinant forms of the enzyme represent promising leads in the search for therapeutic agents able to treat drug-resistant infections. The wild type protein, however, fails to participate effectively in clearance of certain infections due to inherent functional limitations. For example, wild type lysozymes are subject to electrostatic sequestration and inactivation by anionic biopolymers in the infected airway. A charge engineered variant of human lysozyme has recently been shown to possess improved antibacterial activity in the presence of disease associated inhibitory molecules. Here, the 2.04 Å crystal structure of this variant is presented along with an analysis that provides molecular level insights into the origins of the protein's enhanced performance. The charge engineered variant's two mutated amino acids exhibit stabilizing interactions with adjacent native residues, and from a global perspective, the mutations cause no gross structural perturbations or loss of stability. Importantly, the two substitutions dramatically expand the negative electrostatic potential that, in the wild type enzyme, is restricted to a small region near the catalytic residues. The net result is a reduction in the overall strength of the engineered enzyme's electrostatic potential field, and it appears that the specific nature of this remodeled field underlies the variant's reduced susceptibility to inhibition by anionic biopolymers

    Assessment of occupational health problems and physiological stress among the brick field workers of West Bengal, India

    Full text link
    Objectives: The brick field industry is one of the oldest industries in India, which employs a large number of workers of poor socioeconomic status. The main aim of the present investigation is i) to determine the prevalence of musculoskeletal disorders among brick field workers, ii) to determine the prevalence of respiratory disorders and physiological stress among brick field workers compared to control workers. Material and Methods: For this study, a total of 220 brick field workers and 130 control subjects were selected randomly. The control subjects were mainly involved in hand-intensive jobs. The Modified Nordic Questionnaire was applied to assess the discomfort felt among both groups of workers. Thermal stress was also assessed by measuring the WBGT index. The pulmonary functions were checked using the spirometry. Physiological assessment of the workload was carried out by recording the heart rate and blood pressure of the workers prior to work and just after work in the field. Results: Brick field workers suffered from pain especially in the lower back (98%), hands (93%), knees (86%), wrists (85%), shoulders (76%) and neck (65%). Among the brick-making activities, brick field workers felt discomfort during spading for mud collection (98%), carrying bricks (95%) and molding (87%). The results showed a significantly lower p value < 0.001 in FVC, FEV1, FEV1/FVC ratio and PEFR in brick field workers compared to the control group. The post-activity heart rate of the brick field workers was 148.6 beats/min, whereas the systolic and diastolic blood pressure results were 152.8 and 78.5 mm/Hg, respectively. Conclusions: This study concludes that health of the brick field workers was highly affected due to working in unhealthy working conditions for a long period of time

    Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations

    Get PDF
    Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth

    Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association analysis is a powerful tool for annotating phenotypic effects on the genome and knowledge of genes and chromosomal regions associated with dairy phenotypes is useful for genome and gene-based selection. Here, we report results of a genome-wide analysis of predicted transmitting ability (PTA) of 31 production, health, reproduction and body conformation traits in contemporary Holstein cows.</p> <p>Results</p> <p>Genome-wide association analysis identified a number of candidate genes and chromosome regions associated with 31 dairy traits in contemporary U.S. Holstein cows. Highly significant genes and chromosome regions include: BTA13's <it>GNAS </it>region for milk, fat and protein yields; BTA7's <it>INSR </it>region and BTAX's <it>LOC520057 </it>and <it>GRIA3 </it>for daughter pregnancy rate, somatic cell score and productive life; BTA2's <it>LRP1B </it>for somatic cell score; BTA14's <it>DGAT1-NIBP </it>region for fat percentage; <it>BTA1</it>'s <it>FKBP2 </it>for protein yields and percentage, BTA26's <it>MGMT </it>and BTA6's <it>PDGFRA </it>for protein percentage; BTA18's 53.9-58.7 Mb region for service-sire and daughter calving ease and service-sire stillbirth; BTA18's <it>PGLYRP1</it>-<it>IGFL1 </it>region for a large number of traits; BTA18's <it>LOC787057 </it>for service-sire stillbirth and daughter calving ease; BTA15's <it>CD82</it>, BTA23's <it>DST </it>and the <it>MOCS1</it>-<it>LRFN2 </it>region for daughter stillbirth; and BTAX's <it>LOC520057 </it>and <it>GRIA3 </it>for daughter pregnancy rate. For body conformation traits, BTA11, BTAX, BTA10, BTA5, and BTA26 had the largest concentrations of SNP effects, and <it>PHKA2 </it>of BTAX and <it>REN </it>of BTA16 had the most significant effects for body size traits. For body shape traits, BTAX, BTA19 and BTA3 were most significant. Udder traits were affected by BTA16, BTA22, BTAX, BTA2, BTA10, BTA11, BTA20, BTA22 and BTA25, teat traits were affected by BTA6, BTA7, BTA9, BTA16, BTA11, BTA26 and BTA17, and feet/legs traits were affected by BTA11, BTA13, BTA18, BTA20, and BTA26.</p> <p>Conclusions</p> <p>Genome-wide association analysis identified a number of genes and chromosome regions associated with 31 production, health, reproduction and body conformation traits in contemporary Holstein cows. The results provide useful information for annotating phenotypic effects on the dairy genome and for building consensus of dairy QTL effects.</p
    corecore