157 research outputs found

    A simple proof of Perelman's collapsing theorem for 3-manifolds

    Full text link
    We will simplify earlier proofs of Perelman's collapsing theorem for 3-manifolds given by Shioya-Yamaguchi and Morgan-Tian. Among other things, we use Perelman's critical point theory (e.g., multiple conic singularity theory and his fibration theory) for Alexandrov spaces to construct the desired local Seifert fibration structure on collapsed 3-manifolds. The verification of Perelman's collapsing theorem is the last step of Perelman's proof of Thurston's Geometrization Conjecture on the classification of 3-manifolds. Our proof of Perelman's collapsing theorem is almost self-contained, accessible to non-experts and advanced graduate students. Perelman's collapsing theorem for 3-manifolds can be viewed as an extension of implicit function theoremComment: v1: 9 Figures. In this version, we improve the exposition of our arguments in the earlier arXiv version. v2: added one more grap

    Polynomial Growth Harmonic Functions on Finitely Generated Abelian Groups

    Full text link
    In the present paper, we develop geometric analytic techniques on Cayley graphs of finitely generated abelian groups to study the polynomial growth harmonic functions. We develop a geometric analytic proof of the classical Heilbronn theorem and the recent Nayar theorem on polynomial growth harmonic functions on lattices \mathds{Z}^n that does not use a representation formula for harmonic functions. We also calculate the precise dimension of the space of polynomial growth harmonic functions on finitely generated abelian groups. While the Cayley graph not only depends on the abelian group, but also on the choice of a generating set, we find that this dimension depends only on the group itself.Comment: 15 pages, to appear in Ann. Global Anal. Geo

    Doubly connected minimal surfaces and extremal harmonic mappings

    Get PDF
    The concept of a conformal deformation has two natural extensions: quasiconformal and harmonic mappings. Both classes do not preserve the conformal type of the domain, however they cannot change it in an arbitrary way. Doubly connected domains are where one first observes nontrivial conformal invariants. Herbert Groetzsch and Johannes C. C. Nitsche addressed this issue for quasiconformal and harmonic mappings, respectively. Combining these concepts we obtain sharp estimates for quasiconformal harmonic mappings between doubly connected domains. We then apply our results to the Cauchy problem for minimal surfaces, also known as the Bjorling problem. Specifically, we obtain a sharp estimate of the modulus of a doubly connected minimal surface that evolves from its inner boundary with a given initial slope.Comment: 35 pages, 2 figures. Minor edits, references adde

    More about Birkhoff's Invariant and Thorne's Hoop Conjecture for Horizons

    Full text link
    A recent precise formulation of the hoop conjecture in four spacetime dimensions is that the Birkhoff invariant β\beta (the least maximal length of any sweepout or foliation by circles) of an apparent horizon of energy EE and area AA should satisfy β4πE\beta \le 4 \pi E. This conjecture together with the Cosmic Censorship or Isoperimetric inequality implies that the length \ell of the shortest non-trivial closed geodesic satisfies 2πA\ell^2 \le \pi A. We have tested these conjectures on the horizons of all four-charged rotating black hole solutions of ungauged supergravity theories and find that they always hold. They continue to hold in the the presence of a negative cosmological constant, and for multi-charged rotating solutions in gauged supergravity. Surprisingly, they also hold for the Ernst-Wild static black holes immersed in a magnetic field, which are asymptotic to the Melvin solution. In five spacetime dimensions we define β\beta as the least maximal area of all sweepouts of the horizon by two-dimensional tori, and find in all cases examined that β(g)16π3E \beta(g) \le \frac{16 \pi}{3} E, which we conjecture holds quiet generally for apparent horizons. In even spacetime dimensions D=2N+2D=2N+2, we find that for sweepouts by the product S1×SD4S^1 \times S^{D-4}, β\beta is bounded from above by a certain dimension-dependent multiple of the energy EE. We also find that D2\ell^{D-2} is bounded from above by a certain dimension-dependent multiple of the horizon area AA. Finally, we show that D3\ell^{D-3} is bounded from above by a certain dimension-dependent multiple of the energy, for all Kerr-AdS black holes.Comment: 25 page

    The stability inequality for Ricci-flat cones

    Get PDF
    In this article, we thoroughly investigate the stability inequality for Ricci-flat cones. Perhaps most importantly, we prove that the Ricci-flat cone over CP^2 is stable, showing that the first stable non-flat Ricci-flat cone occurs in the smallest possible dimension. On the other hand, we prove that many other examples of Ricci-flat cones over 4-manifolds are unstable, and that Ricci-flat cones over products of Einstein manifolds and over Kähler-Einstein manifolds with h^{1,1}>1 are unstable in dimension less than 10. As results of independent interest, our computations indicate that the Page metric and the Chen-LeBrun-Weber metric are unstable Ricci shrinkers. As a final bonus, we give plenty of motivations, and partly confirm a conjecture of Tom Ilmanen relating the lambda-functional, the positive mass theorem and the nonuniqueness of Ricci flow with conical initial data

    Non stationary Einstein-Maxwell fields interacting with a superconducting cosmic string

    Full text link
    Non stationary cylindrically symmetric exact solutions of the Einstein-Maxwell equations are derived as single soliton perturbations of a Levi-Civita metric, by an application of Alekseev inverse scattering method. We show that the metric derived by L. Witten, interpreted as describing the electrogravitational field of a straight, stationary, conducting wire may be recovered in the limit of a `wide' soliton. This leads to the possibility of interpreting the solitonic solutions as representing a non stationary electrogravitational field exterior to, and interacting with, a thin, straight, superconducting cosmic string. We give a detailed discussion of the restrictions that arise when appropiate energy and regularity conditions are imposed on the matter and fields comprising the string, considered as `source', the most important being that this `source' must necessarily have a non- vanishing minimum radius. We show that as a consequence, it is not possible, except in the stationary case, to assign uniquely a current to the source from a knowledge of the electrogravitational fields outside the source. A discussion of the asymptotic properties of the metrics, the physical meaning of their curvature singularities, as well as that of some of the metric parameters, is also included.Comment: 14 pages, no figures (RevTex
    corecore