78 research outputs found

    Long-term analysis of GOME in-flight calibration parameters and instrument degradation

    Get PDF
    Since 1995, the Global Ozone Monitoring Experiment (GOME) has measured solar and backscattered spectra in the ultraviolet and visible wavelength range. Now, the extensive data set of the most important calibration parameters has been investigated thoroughly in order to analyze the long-term stability and performance of the instrument. This study focuses on GOME in-flight calibration and degradation for the solar path. Monitoring the sensor degradation yields an intensity decrease of 70% to 90% in 240–316nm and 35% to 65% in 311–415 nm. The spectral calibration is very stable over the whole period, although a very complex interaction between predisperser temperature and wavelength was found. The leakage current and the pixel-to-pixel gain increased significantly during the mission, which requires an accurate correction of the measured radiance and irradiance signals using proper calibration parameters. Finally, several outliers in the data sets can be directly assigned to instrument and satellite anomalies

    Global, regional and seasonal analysis of total ozone trends derived from the 1995–2020 GTO-ECV climate data record

    Get PDF
    We present an updated perspective on near-global total ozone trends for the period 1995–2020. We use the GOME-type (Global Ozone Monitoring Experiment) Total Ozone Essential Climate Variable (GTO-ECV) satellite data record which has been extended and generated as part of the European Space Agency's Climate Change Initiative (ESA-CCI) and European Union Copernicus Climate Change Service (EU-C3S) ozone projects. The focus of our work is to examine the regional patterns and seasonal dependency of the ozone trend. In the Southern Hemisphere we found regions that indicate statistically significant positive trends increasing from 0.6 ± 0.5(2σ) % per decade in the subtropics to 1.0 ± 0.9 % per decade in the middle latitudes and 2.8 ± 2.6 % per decade in the latitude band 60–70∘ S. In the middle latitudes of the Northern Hemisphere the trend exhibits distinct regional patterns, i.e., latitudinal and longitudinal structures. Significant positive trends (∼ 1.5 ± 1.0 % per decade) over the North Atlantic region, as well as barely significant negative trends (−1.0 ± 1.0 % per decade) over eastern Europe, were found. Moreover, these trends correlate with long-term changes in tropopause pressure. Total ozone trends in the tropics are not statistically significant. Regarding the seasonal dependence of the trends we found only very small variations over the course of the year. However, we identified different behavior depending on latitude. In the latitude band 40–70∘ N the positive trend maximizes in boreal winter from December to February. In the middle latitudes of the Southern Hemisphere (35–50∘ S) the trend is maximum from March to May. Further south toward the high latitudes (55–70∘ S) the trend exhibits a relatively strong seasonal cycle which varies from 2 % per decade in December and January to 3.8 % per decade in June and July

    The Global Ozone Monitoring Experiment: Review of in-flight performance and new reprocessed 1995-2011 level 1 product

    Get PDF
    The Global Ozone Monitoring Experiment (GOME) on-board the second European Remote Sensing satellite provided measurements of atmospheric constituents such as ozone or other trace gases for the 16 year period from 1995 to 2011. In this paper we present a detailed analysis of the long-term performance of the sensor and introduce the new homogenized and fully calibrated level 1 product which has been generated using the recently developed GOME Data Processor level-0-to-1b (GDP-L1) Version 5.1. By means of the various in-flight calibration parameters we monitor the behavior and stability of the instrument during the entire mission. Severe degradation of the optical components has led to a significant decrease in intensity in particular in channels 1 and 2 covering the spectral ranges of 240–316 nm and 311–405 nm, respectively. Thus, a soft correction based on using the sun as a stable calibration source is applied. Revision and optimization of other calibration algorithms such as the wavelength assignment, polarization correction, or dark current correction resulted in an improved and homogeneous level 1 product that can be regarded as the European satellite reference data for successor atmospheric composition sensors and that provides an excellent prerequisite for further exploitation of GOME measurements

    Trends of tropical tropospheric ozone from 20 years of European satellite measurements and perspectives for the Sentinel-5 Precursor

    Get PDF
    In preparation of the TROPOMI/S5P launch in early 2017, a tropospheric ozone retrieval based on the convective cloud differential method was developed. For intensive tests we applied the algorithm to the total ozone columns and cloud data of the satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B. Thereby a time series of 20 years (1995–2015) of tropospheric column ozone was generated. To have a consistent total ozone data set for all sensors, one common retrieval algorithm, namely GODFITv3, was applied and the L1 reflectances were also soft calibrated. The total ozone columns and the cloud data were input into the tropospheric ozone retrieval. However, the tropical tropospheric column ozone (TCO) for the individual instruments still showed small differences and, therefore, we harmonised the data set. For this purpose, a multilinear function was fitted to the averaged difference between SCIAMACHY's TCO and those from the other sensors. The original TCO was corrected by the fitted offset. GOME-2B data were corrected relative to the harmonised data from OMI and GOME-2A. The harmonisation leads to a better agreement between the different instruments. Also, a direct comparison of the TCO in the overlapping periods proves that GOME-2A agrees much better with SCIAMACHY after the harmonisation. The improvements for OMI were small. Based on the harmonised observations, we created a merged data product, containing the TCO from July 1995 to December 2015. A first application of this 20-year record is a trend analysis. The tropical trend is 0.7 ± 0.12 DU decade−1. Regionally the trends reach up to 1.8 DU decade−1 like on the African Atlantic coast, while over the western Pacific the tropospheric ozone declined over the last 20 years with up to 0.8 DU decade−1. The tropical tropospheric data record will be extended in the future with the TROPOMI/S5P data, where the TCO is part of the operational products

    Global long-term monitoring of the ozone layer - a prerequisite for predictions

    Get PDF
    Although the Montreal Protocol now controls the production and emission of ozone depleting substances, the timing of ozone recovery is unclear. There are many other factors affecting the ozone layer, in particular climate change is expected to modify the speed of re-creation of the ozone layer. Therefore, long-term observations are needed to monitor the further evolution of the stratospheric ozone layer. Measurements from satellite instruments provide global coverage and are supplementary to selective ground-based observations. The combination of data derived from different space-borne instruments is needed to produce homogeneous and consistent long-term data records. They are required for robust investigations including trend analysis. For the first time global total ozone columns from three European satellite sensors GOME (ERS-2), SCIAMACHY (ENVISAT), and GOME-2 (METOP-A) are combined and added up to a continuous time series starting in June 1995. On the one hand it is important to monitor the consequences of the Montreal Protocol and its amendments; on the other hand multi-year observations provide the basis for the evaluation of numerical models describing atmospheric processes, which are also used for prognostic studies to assess the future development. This paper gives some examples of how to use satellite data products to evaluate model results with respective data derived from observations, and to disclose the abilities and deficiencies of atmospheric models. In particular, multi-year mean values derived from the Chemistry-Climate Model E39C-A are used to check climatological values and the respective standard deviations

    Record low ozone values over the Arctic in boreal spring 2020

    Get PDF
    . Ozone data derived from the Tropospheric Monitoring Instrument (TROPOMI) sensor on board the Sentinel- 5 Precursor satellite show exceptionally low total ozone columns in the polar region of the Northern Hemisphere (Arctic) in spring 2020. Minimum total ozone column values around or below 220 Dobson units (DU) were seen over the Arctic for 5 weeks in March and early April 2020. Usually the persistence of such low total ozone column values in spring is only observed in the polar Southern Hemisphere (Antarctic) and not over the Arctic

    Two decades of homogenized satellite ozone measurements for climate services

    Get PDF
    Since the launch of GOME onboard ERS-2 in 1995 total and tropospheric ozone have been derived from European satellite instruments. In the framework of the ESA CCI and the EU ECMWF C3S projects, BIRA generates total ozone products from the satellite sensors GOME, SCIAMACHY, OMI, and GOME-2 using the GODFIT algorithm and DLR is responsible for harmonizing the total column data from all these sensors and generating a merged product, which encompasses more than two decades of global total ozone observations. Additionally, tropospheric ozone columns form the European sensors are generated by DLR using the convective cloud differential algorithm. Total and tropospheric ozone from GOME-2 onboard MetOp-A and -B are operational products from the EUMETSAT AC-SAF and within the ESA CCI project the tropical tropospheric ozone products from GOME, SCIAMACHY, OMI, and GOME-2 were harmonized and a merged data product was delivered and has been updated regularly. On a global scale a slight increase in total ozone columns is observed over the years since 1995 until today indicating that the total ozone starts to emerge into the expected recovery phase. Tropospheric data from the last 22 years show a slightly increasing trend with strong regional variations especially in the tropical eastern Pacific and Atlantic Ocean. These unique ozone datasets will be extended during the next two decades with measurements from the EU Copernicus missions Sentinel-5 Precursors (successfully launched in October 2017) and the future Sentinel-4 and Sentinel-5 missions

    Tropospheric ozone column data records based on total columns from GOME, SCIAMACHY, GOME-2, OMI and TROPOMI using CCD algorithm or in combination with BASCOE/MLS

    Get PDF
    A long-term tropospheric ozone time series has been generated for the tropical band (20°S to 20°N) based on convective cloud differential algorithm (CCD). Tropical tropospheric ozone columns were retrieved from several European sensors starting with observations by GOME in 1995 and including data from SCIAMACHY, OMI, GOME-2A and GOME-2B. It has now been extended by DLR with data from GOME-2C and TROPOMI and now encompasses 25 years. The tropospheric ozone retrieval for all data sets is based on the total columns retrieved with the GODFIT algorithm and associated cloud products. There are however some differences between the different tropospheric columns from the different sensors which have to be corrected for. For the CCD time series, we used SCIAMACHY data as reference and fitted an offset and a trend correction to the data of the other sensors. We estimated the trend based on the long-term time series. For the tropics an overall trend of +0.7 DU/decade was found in the data set until 2019, varying locally between -0.5 and 1.8 DU/decade. The second data record combines total ozone columns from TROPOMI with BASCOE stratospheric ozone profiles. BASCOE stratospheric ozone data is constrained by assimilated Aura MLS observation and it is provided with 3-hour time resolutions in NRT. We used the BASCOE NRT data set to calculate the stratospheric ozone columns for every day from April 2018 to December 2020 and subtracted it from the respective NRT total columns observed by TROPOMI. The TROPOMI NRT total ozone product was updated recently including a new surface albedo retrieval algorithm. An internal reanalysis of the NRT data was used to create a consistent tropospheric ozone data set. A comparison to ozone sondes showed a good agreement for most part of the world. For the GEMS validation the TROPOMI total ozone NRT algorithm is applied to selected the GEMS data. Also, the tropospheric ozone column might be retrieved based on the TROPOMI-BASCOE algorithm described above. Both the CCD and the TROPOMI-BASCOE tropospheric ozone data will be presented. Furthermore, first results for total and troposheric ozone columns of GEMS data using the TROPOMI algorithms might be shown

    Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets

    Get PDF
    We report on updated trends using different merged zonal mean total ozone datasets from satellite and ground-based observations for the period from 1979 to 2020. This work is an update of the trends reported in Weber et al. (2018) using the same datasets up to 2016. Merged datasets used in this study include NASA MOD v8.7 and NOAA Cohesive Data (COH) v8.6, both based on data from the series of Solar Backscatter Ultraviolet (SBUV), SBUV-2, and Ozone Mapping and Profiler Suite (OMPS) satellite instruments (1978–present), as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone – Essential Climate Variable (GTO-ECV) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (both 1995–present), mainly comprising satellite data from GOME, SCIAMACHY, OMI, GOME-2A, GOME-2B, and TROPOMI. The fifth dataset consists of the annual mean zonal mean data from ground-based measurements collected at the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. The addition of 4 more years consolidated the fact that total ozone is indeed slowly recovering in both hemispheres as a result of phasing out ozone-depleting substances (ODSs) as mandated by the Montreal Protocol. The near-global (60∘ S–60∘ N) ODS-related ozone trend of the median of all datasets after 1995 was 0.4 ± 0.2 (2σ) %/decade, which is roughly a third of the decreasing rate of 1.5 ± 0.6 %/decade from 1978 until 1995. The ratio of decline and increase is nearly identical to that of the EESC (equivalent effective stratospheric chlorine or stratospheric halogen) change rates before and after 1995, confirming the success of the Montreal Protocol. The observed total ozone time series are also in very good agreement with the median of 17 chemistry climate models from CCMI-1 (Chemistry-Climate Model Initiative Phase 1) with current ODS and GHG (greenhouse gas) scenarios (REF-C2 scenario). The positive ODS-related trends in the Northern Hemisphere (NH) after 1995 are only obtained with a sufficient number of terms in the MLR accounting properly for dynamical ozone changes (Brewer–Dobson circulation, Arctic Oscillation (AO), and Antarctic Oscillation (AAO)). A standard MLR (limited to solar, Quasi-Biennial Oscillation (QBO), volcanic, and El Niño–Southern Oscillation (ENSO)) leads to zero trends, showing that the small positive ODS-related trends have been balanced by negative trend contributions from atmospheric dynamics, resulting in nearly constant total ozone levels since 2000

    The FDR4ATMOS Project

    Get PDF
    The FDR4ATMOS project has two main tasks. The focus of task A is to update the SCIAMACHY processing chain for better Ozone total columns. After the full re-processing of the SCIAMACHY mission with processor versions 9 (Level 1) and version 7 (Level 2), the comparison with ground-based data showed that the total Ozone column showed a downward trend of nearly 2% from the beginning of the time series to its end. This trend is an artefact and is likely caused by changes made to the calibration algorithms in the Level 1 processor (the DOAS retrieval algorithm for Ozone was not changed). The most likely reason are changes in the degradation correction that lead to subtle changes in the spectral structures that in the retrieval are interpreted as an atmospheric signature. In task A we will update the Level 0-1 processor with the final aim of a mission re-processing. The second task in the FDR4ATMOS project is to develop a cross-instrument Level 1 product for GOME-1 and SCIAMACHY for the UV, VIS and NIR spectral range with a focus on the spectral windows used for O3, SO2, NO2 total column retrieval and the determination of cloud properties. Contrary to other projects, FDR4ATMOS does not aim to build a harmonised time series on Level 2 products but on Level 1 products, i.e. radiances and reflectances. The GOME-1 and SCIAMACHY instrument together span 17 years of spectrally highly resolved data. The goal of the FDR4ATMOS project is to generate harmonised data sets that allow the user to use it directly in long term trend analysis, independent of the instrument. Since this was never done for highly resolved spectrometers, new methods have to be developed that e.g. take into account the different observation geometries and observation times of the instrument without impacting the spectral structures that are used for the retrieval of the atmospheric species. The resulting algorithms and the processor should also be as generic as possible to be able to transfer the methodology easily to other instruments (e.g. GOME-2, Sentinel-5p) for a future extension of the time series. The FDR4ATMOS started in October 2019 and is currently in phase 1. We will present the goals of the project and first results
    • …
    corecore