3,467 research outputs found
Mode-selective quantization and multimodal effective models for spherically layered systems
We propose a geometry-specific, mode-selective quantization scheme in coupled
field-emitter systems which makes it easy to include material and geometrical
properties, intrinsic losses as well as the positions of an arbitrary number of
quantum emitters. The method is presented through the example of a spherically
symmetric, non-magnetic, arbitrarily layered system. We follow it up by a
framework to project the system on simpler, effective cavity QED models.
Maintaining a well-defined connection to the original quantization, we derive
the emerging effective quantities from the full, mode-selective model in a
mathematically consistent way. We discuss the uses and limitations of these
effective models
Eclipses of the inner satellites of Jupiter observed in 2015
During the 2014-2015 campaign of mutual events, we recorded ground-based
photometric observations of eclipses of Amalthea (JV) and, for the first time,
Thebe (JXIV) by the Galilean moons. We focused on estimating whether the
positioning accuracy of the inner satellites determined with photometry is
sufficient for dynamical studies. We observed two eclipses of Amalthea and one
of Thebe with the 1 m telescope at Pic du Midi Observatory using an IR filter
and a mask placed over the planetary image to avoid blooming features. A third
observation of Amalthea was taken at Saint-Sulpice Observatory with a 60 cm
telescope using a methane filter (890 nm) and a deep absorption band to
decrease the contrast between the planet and the satellites. After background
removal, we computed a differential aperture photometry to obtain the light
flux, and followed with an astrometric reduction. We provide astrometric
results with an external precision of 53 mas for the eclipse of Thebe, and 20
mas for that of Amalthea. These observation accuracies largely override
standard astrometric measurements. The (O-C)s for the eclipse of Thebe are 75
mas on the X-axis and 120 mas on the Y-axis. The (O-C)s for the total eclipses
of Amalthea are 95 mas and 22 mas, along the orbit, for two of the three
events. Taking into account the ratio of (O-C) to precision of the astrometric
results, we show a significant discrepancy with the theory established by
Avdyushev and Ban'shikova in 2008, and the JPL JUP 310 ephemeris.Comment: 7 pages, 10 figures, 4 table
Quantum Plasmonics with multi-emitters: Application to adiabatic control
We construct mode-selective effective models describing the interaction of N
quantum emitters (QEs) with the localised surface plasmon polaritons (LSPs)
supported by a spherical metal nanoparticle (MNP) in an arbitrary geometric
arrangement of the QEs. We develop a general formulation in which the field
response in the presence of the nanosystem can be decomposed into orthogonal
modes with the spherical symmetry as an example. We apply the model in the
context of quantum information, investigating on the possibility of using the
LSPs as mediators of an efficient control of population transfer between two
QEs. We show that a Stimulated Raman Adiabatic Passage configuration allows
such a transfer via a decoherence-free dark state when the QEs are located on
the same side of the MNP and very closed to it, whereas the transfer is blocked
when the emitters are positioned at the opposite sides of the MNP. We explain
this blockade by the destructive superposition of all the interacting plasmonic
modes
GRB 110205A: Anatomy of a long gamma-ray burst
The Swift burst GRB 110205A was a very bright burst visible in the Northern
hemisphere. GRB 110205A was intrinsically long and very energetic and it
occurred in a low-density interstellar medium environment, leading to delayed
afterglow emission and a clear temporal separation of the main emitting
components: prompt emission, reverse shock, and forward shock. Our observations
show several remarkable features of GRB 110205A : the detection of prompt
optical emission strongly correlated with the BAT light curve, with no temporal
lag between the two ; the absence of correlation of the X-ray emission compared
to the optical and high energy gamma-ray ones during the prompt phase ; and a
large optical re-brightening after the end of the prompt phase, that we
interpret as a signature of the reverse shock. Beyond the pedagogical value
offered by the excellent multi-wavelength coverage of a GRB with temporally
separated radiating components, we discuss several questions raised by our
observations: the nature of the prompt optical emission and the spectral
evolution of the prompt emission at high-energies (from 0.5 keV to 150 keV) ;
the origin of an X-ray flare at the beginning of the forward shock; and the
modeling of the afterglow, including the reverse shock, in the framework of the
classical fireball model.Comment: 21 pages, 5 figure (all in colors), accepted for publication in Ap
Orbit determination of Transneptunian objects and Centaurs for the prediction of stellar occultations
The prediction of stellar occultations by Transneptunian objects and Centaurs
is a difficult challenge that requires accuracy both in the occulted star
position as for the object ephemeris. Until now, the most used method of
prediction involving tens of TNOs/Centaurs was to consider a constant offset
for the right ascension and for the declination with respect to a reference
ephemeris. This offset is determined as the difference between the most recent
observations of the TNO and the reference ephemeris. This method can be
successfully applied when the offset remains constant with time. This paper
presents an alternative method of prediction based on a new accurate orbit
determination procedure, which uses all the available positions of the TNO from
the Minor Planet Center database plus sets of new astrometric positions from
unpublished observations. The orbit determination is performed through a
numerical integration procedure (NIMA), in which we develop a specific
weighting scheme. The NIMA method was applied for 51 selected TNOs/Centaurs.
For this purpose, we have performed about 2900 new observations during
2007-2014. Using NIMA, we succeed in predicting the stellar occultations of 10
TNOs and 3 Centaurs between 2013 and 2015. By comparing the NIMA and JPL
ephemerides, we highlighted the variation of the offset between them with time.
Giving examples, we show that the constant offset method could not accurately
predict 6 out of the 13 observed positive occultations successfully predicted
by NIMA. The results indicate that NIMA is capable of efficiently refine the
orbits of these bodies. Finally, we show that the astrometric positions given
by positive occultations can help to further refine the orbit of the TNO and
consequently the future predictions. We also provide the unpublished
observations of the 51 selected TNOs and their ephemeris in a usable format by
the SPICE library.Comment: 12 pages, 9 figures, accepted in A&
3D homogenised strength criterion for masonry: application to drystone retaining walls
A 3D strength criterion for masonry is constructed based on yield design theory. Yield design homogenisation provides a rigorous theoretical framework to determine the yield strength properties of a periodic medium, based on the properties of its constituent materials. First, theoretical basis of 2D homogenisation of periodic media, and more particularly its application in the framework of yield design, will be retrieved. Then, 2D principles are extended to exhibit a 3D domain of running-bond masonry. This criterion is finally used to assess the stability of a drystone retaining wall loaded by an axle load, and theoretical results are compared to experimental data. Perspectives on this work are given as a conclusion
Wind turbine sound propagation:Comparison of a linearized Euler equations model with parabolic equation methods
Noise generated by wind turbines is significantly impacted by its propagation in the atmosphere. Hence, for annoyance issues, an accurate prediction of sound propagation is critical to determine noise levels around wind turbines. This study presents a method to predict wind turbine sound propagation based on linearized Euler equations. We compare this approach to the parabolic equation method, which is widely used since it captures the influence of atmospheric refraction, ground reflection, and sound scattering at a low computational cost. Using the linearized Euler equations is more computationally demanding but can reproduce more physical effects as fewer assumptions are made. An additional benefit of the linearized Euler equations is that they provide a time-domain solution. To compare both approaches, we simulate sound propagation in two distinct scenarios. In the first scenario, a wind turbine is situated on flat terrain; in the second, a turbine is situated on a hilltop. The results show that both methods provide similar noise predictions in the two scenarios. We find that while some differences in the propagation results are observed in the second case, the final predictions for a broadband extended source are similar between the two methods
- …