109 research outputs found
Theoretical Analysis of the No-Slip Boundary Condition Enforcement in SPH Methods
The aim of the present work is to provide an in-depth analysis of the most representative mirroring techniques used in SPH to enforce boundary conditions (BC) along solid profiles. We specifically refer to dummy particles, ghost particles, and Takeda et al. [Prog. Theor. Phys. 92 (1994), 939] boundary integrals. The analysis has been carried out by studying the convergence of the first- and second-order differential operators as the smoothing length (that is, the characteristic length on which relies the SPH interpolation) decreases. These differential operators are of fundamental importance for the computation of the viscous drag and the viscous/diffusive terms in the momentum and energy equations. It has been proved that close to the boundaries some of the mirroring techniques leads to intrinsic inaccuracies in the convergence of the differential operators. A consistent formulation has been derived starting from Takeda et al. boundary integrals (see the above reference). This original formulation allows implementing no-slip boundary conditions consistently in many practical applications as viscous flows and diffusion problems
Whole exome HBV DNA integration is independent of the intrahepatic HBV reservoir in HBeAg-negative chronic hepatitis B
The involvement of HBV DNA integration in promoting hepatocarcinogenesis and the extent to which the intrahepatic HBV reservoir modulates liver disease progression remains poorly understood. We examined the intrahepatic HBV reservoir, the occurrence of HBV DNA integration and its impact on the hepatocyte transcriptome in hepatitis B 'e' antigen (HBeAg)-negative chronic hepatitis B (CHB)
Localisation of gamma-ray bursts from the combined SpIRIT+HERMES-TP/SP nano-satellite constellation
Multi-messenger observations of the transient sky to detect cosmic explosions
and counterparts of gravitational wave mergers critically rely on orbiting
wide-FoV telescopes to cover the wide range of wavelengths where atmospheric
absorption and emission limit the use of ground facilities. Thanks to
continuing technological improvements, miniaturised space instruments operating
as distributed-aperture constellations are offering new capabilities for the
study of high energy transients to complement ageing existing satellites. In
this paper we characterise the performance of the upcoming joint SpIRIT +
HERMES-TP/SP nano-satellite constellation for the localisation of high-energy
transients through triangulation of signal arrival times. SpIRIT is an
Australian technology and science demonstrator satellite designed to operate in
a low-Earth Sun-synchronous Polar orbit that will augment the science
operations for the equatorial HERMES-TP/SP. In this work we simulate the
improvement to the localisation capabilities of the HERMES-TP/SP when SpIRIT is
included in an orbital plane nearly perpendicular (inclination = 97.6)
to the HERMES orbits. For the fraction of GRBs detected by three of the HERMES
satellites plus SpIRIT, the combined constellation is capable of localising 60%
of long GRBs to within ~ 30 deg on the sky, and 60% of short GRBs within ~
1850 deg. Based purely on statistical GRB localisation capabilities (i.e.,
excluding systematic uncertainties and sky coverage), these figures for long
GRBs are comparable to those reported by the Fermi GBM. Further improvements by
a factor of 2 (or 4) can be achieved by launching an additional 4 (or 6)
SpIRIT-like satellites into a Polar orbit, which would both increase the
fraction of sky covered by multiple satellite elements, and enable 60%
of long GRBs to be localised within a radius of ~ 1.5 on the sky.Comment: 17 pages, 10 figures, 1 table. Accepted for publication in PAS
Highly specific memory b cells generation after the 2nd dose of bnt162b2 vaccine compensate for the decline of serum antibodies and absence of mucosal iga
Specific memory B cells and antibodies are a reliable read-out of vaccine efficacy. We analysed these biomarkers after one and two doses of BNT162b2 vaccine. The second dose significantly increases the level of highly specific memory B cells and antibodies. Two months after the second dose, specific antibody levels decline, but highly specific memory B cells continue to increase, thus predicting a sustained protection from COVID-19. We show that although mucosal IgA is not induced by the vaccination, memory B cells migrate in response to inflammation and secrete IgA at mucosal sites. We show that the first vaccine dose may lead to an insufficient number of highly specific memory B cells and low concentration of serum antibodies, thus leaving vaccinees without the immune robustness needed to ensure viral elimination and herd immunity. We also clarify that the reduction of serum antibodies does not diminish the force and duration of the immune protection induced by vaccination. The vaccine does not induce sterilizing immunity. Infection after vaccination may be caused by the lack of local preventive immunity because of the absence of mucosal IgA
Immune-escape mutations and stop-codons in HBsAg develop in a large proportion of patients with chronic HBV infection exposed to anti-HBV drugs in Europe
Background: HBsAg immune-escape mutations can favor HBV-transmission also in vaccinated individuals, promote immunosuppression-driven HBV-reactivation, and increase fitness of drug-resistant strains. Stop-codons can enhance HBV oncogenic-properties. Furthermore, as a consequence of the overlapping structure of HBV genome, some immune-escape mutations or stop-codons in HBsAg can derive from drug-resistance mutations in RT. This study is aimed at gaining insight in prevalence and characteristics of immune-associated escape mutations, and stop-codons in HBsAg in chronically HBV-infected patients experiencing nucleos(t)ide analogues (NA) in Europe. Methods: This study analyzed 828 chronically HBV-infected European patients exposed to ≥ 1 NA, with detectable HBV-DNA and with an available HBsAg-sequence. The immune-associated escape mutations and the NA-induced immune-escape mutations sI195M, sI196S, and sE164D (resulting from drug-resistance mutation rtM204 V, rtM204I, and rtV173L) were retrieved from literature and examined. Mutations were defined as an aminoacid substitution with respect to a genotype A or D reference sequence. Results: At least one immune-associated escape mutation was detected in 22.1% of patients with rising temporal-trend. By multivariable-analysis, genotype-D correlated with higher selection of ≥ 1 immune-associated escape mutation (OR[95%CI]:2.20[1.32-3.67], P = 0.002). In genotype-D, the presence of ≥ 1 immune-associated escape mutations was significantly higher in drug-exposed patients with drug-resistant strains than with wild-type virus (29.5% vs 20.3% P = 0.012). Result confirmed by ana
GrailQuest & HERMES: Hunting for Gravitational Wave Electromagnetic Counterparts and Probing Space-Time Quantum Foam
Within Quantum Gravity theories, different models for space-time quantisation predict an energy dependent speed for photons. Although the predicted discrepancies are minuscule, GRB, occurring at cosmological distances, could be used to detect this signature of space-time granularity with a new concept of modular observatory of huge overall collecting area consisting in a fleet of small satellites in low orbits, with sub-microsecond time resolution and wide energy band (keV-MeV). The enormous number of collected photons will allow to effectively search these energy dependent delays. Moreover, GrailQuest will allow to perform temporal triangulation of high signal-to-noise impulsive events with arc-second positional accuracies: an extraordinary sensitive X-ray/Gamma all-sky monitor crucial for hunting the elusive electromagnetic counterparts of GW. A pathfinder of GrailQuest is already under development through the HERMES project: a fleet of six 3U cube-sats to be launched by 2021/22
Persistent B cell memory after SARS-CoV-2 vaccination is functional during breakthrough infections
Breakthrough SARS-CoV-2 infections in fully vaccinated individuals are considered a consequence of waning immunity. Serum antibodies represent the most measurable outcome of vaccine-induced B cell memory. When antibodies decline, memory B cells are expected to persist and perform their function, preventing clinical disease. We investigated whether BNT162b2 mRNA vaccine induces durable and functional B cell memory in vivo against SARS-CoV-2 3, 6, and 9 months after the second dose in a cohort of health care workers (HCWs). While we observed physiological decline of SARS-CoV-2-specific antibodies, memory B cells persist and increase until 9 months after immunization. HCWs with breakthrough infections had no signs of waning immunity. In 3–4 days, memory B cells responded to SARS-CoV-2 infection by producing high levels of specific antibodies in the serum and anti-Spike IgA in the saliva. Antibodies to the viral nucleoprotein were produced with the slow kinetics typical of the response to a novel antigen
- …