17 research outputs found

    Current provision of simulation in the UK and Republic of Ireland trauma and orthopaedic specialist training: a national survey.

    Get PDF
    Aims: The primary aim of the survey was to map the current provision of simulation training within UK and Republic of Ireland (RoI) trauma and orthopaedic (T&O) specialist training programmes to inform future design of a simulation based-curriculum. The secondary aims were to characterize; the types of simulation offered to trainees by stage of training, the sources of funding for simulation, the barriers to providing simulation in training, and to measure current research activity assessing the educational impact of simulation. Methods: The development of the survey was a collaborative effort between the authors and the British Orthopaedic Association Simulation Group. The survey items were embedded in the Performance and Opportunity Dashboard, which annually audits quality in training across several domains on behalf of the Speciality Advisory Committee (SAC). The survey was sent via email to the 30 training programme directors in March 2019. Data were retrieved and analyzed at the Warwick Clinical Trials Unit, UK. Results: Overall, 28 of 30 programme directors completed the survey (93%). 82% of programmes had access to high-fidelity simulation facilities such as cadaveric laboratories. More than half (54%) had access to a non-technical skills simulation training. Less than half (43%) received centralized funding for simulation, a third relied on local funding such as the departmental budget, and there was a heavy reliance on industry sponsorship to partly or wholly fund simulation training (64%). Provision was higher in the mid-stages (ST3-5) compared to late-stages (ST6-8) of training, and was formally timetabled in 68% of prostgrammes. There was no assessment of the impact of simulation training using objective behavioural measures or real-world clinical outcomes. Conclusion: There is currently widespread, but variable, provision of simulation in T&O training in the UK and RoI, which is likely to expand further with the new curriculum. It is important that research activity into the impact of simulation training continues, to develop an evidence base to support investment in facilities and provision

    ACL graft compression: a method to allow reduced tunnel sizes in ACL reconstruction

    No full text
    PURPOSE: A common problem during ACL reconstruction is asymmetry of proximal-distal graft diameter leading to tunnel upsizing and graft-tunnel mismatch. Compression downsizing provides a graft of uniform size, allowing easy passage into a smaller tunnel. The purpose of this study was to quantify the graft compression technique and its effects on graft biomechanics and stability. It was hypothesised that compression downsizing would significantly reduce cross-sectional area (CSA); that no significant changes in graft biomechanics would occur; graft fixation stability would be improved. METHOD: Sixty-eight non-irradiated peroneus longus (PL) tendons were investigated. Twenty were halved and paired into ten four-strand grafts, 20 strands were compressed by 0.5-1 mm diameter and changes in CSA recorded using an alginate mould technique. The following properties were compared with 20 control strands: cyclic strain when loaded 70-220 N for 1000 cycles; stiffness; ultimate tensile load and stress; Young's modulus. 24 PL tendons were quadrupled into grafts, 12 were compressed and all 24 were submerged in Ringer's solution at 37 °C and the CSA recorded over 12 h. Twelve compressed and 12 control quadrupled grafts were mounted in porcine femurs, placed in Ringer's solution for 12 h at 37 °C and graft displacement at the bone tunnel aperture recorded under cyclic loading. RESULTS: Mean decreases in CSA of 31% under a stress of 471 kPa and 21% under a stress of 447 kPa were observed for doubled and quadrupled grafts, respectively. Compressed grafts re-expanded by 19% over 12 h compared to 2% for controls. No significant differences were observed between compressed and control grafts in the biomechanical properties and graft stability; mean cyclic displacements were 0.3 mm for both groups. CONCLUSIONS: No detrimental biomechanical effects of graft compression on allograft PL tendons were observed. Following compression, the grafts significantly increased in size during in vitro joint simulation. No significant difference was observed in graft stability between groups. Graft compression did not cause adverse mechanical effects in vitro. Smaller tunnels for compressed grafts reduce bone loss and ease anatomical placement

    Nuclear cardiology practice and associated radiation doses in Europe: results of the IAEA Nuclear Cardiology Protocols Study (INCAPS) for the 27 European countries

    Get PDF
    Purpose: Nuclear cardiology is widely used to diagnose coronary artery disease and to guide patient management, but data on current practices, radiation dose-related best practices, and radiation doses are scarce. To address these issues, the IAEA conducted a worldwide study of nuclear cardiology practice. We present the European subanalysis. Methods: In March 2013, the IAEA invited laboratories across the world to document all SPECT and PET studies performed in one week. The data included age, gender, weight, radiopharmaceuticals, injected activities, camera type, positioning, hardware and software. Radiation effective dose was calculated for each patient. A quality score was defined for each laboratory as the number followed of eight predefined best practices with a bearing on radiation exposure (range of quality score 0 â€“ 8). The participating European countries were assigned to regions (North, East, South, and West). Comparisons were performed between the four European regions and between Europe and the rest-of-the-world (RoW). Results: Data on 2,381 European patients undergoing nuclear cardiology procedures in 102 laboratories in 27 countries were collected. A cardiac SPECT study was performed in 97.9 % of the patients, and a PET study in 2.1 %. The average effective dose of SPECT was 8.0 ± 3.4 mSv (RoW 11.4 ± 4.3 mSv; P < 0.001) and of PET was 2.6 ± 1.5 mSv (RoW 3.8 ± 2.5 mSv; P < 0.001). The mean effective doses of SPECT and PET differed between European regions (P < 0.001 and P = 0.002, respectively). The mean quality score was 6.2 ± 1.2, which was higher than the RoW score (5.0 ± 1.1; P < 0.001). Adherence to best practices did not differ significantly among the European regions (range 6 to 6.4; P = 0.73). Of the best practices, stress-only imaging and weight-adjusted dosing were the least commonly used. Conclusion: In Europe, the mean effective dose from nuclear cardiology is lower and the average quality score is higher than in the RoW. There is regional variation in effective dose in relation to the best practice quality score. A possible reason for the differences between Europe and the RoW could be the safety culture fostered by actions under the Euratom directives and the implementation of diagnostic reference levels. Stress-only imaging and weight-adjusted activity might be targets for optimization of European nuclear cardiology practice

    Current worldwide nuclear cardiology practices andradiationexposure: results from the 65 country IAEA nuclear cardiology protocols cross-sectional study (INCAPS)

    Get PDF
    Aims To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiationoptimizing 'best practices' worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. Methods and results We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March-April 2013. Eight 'best practices' relating to radiation exposurewere identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more 'best practices' had lower EDs Conclusion Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally
    corecore