11 research outputs found

    Identification of bull semen microbiota and possible alternatives for antibiotics in semen extenders

    Get PDF
    The use of 16S rRNA sequencing has revolutionised research on the microbiome. However, few studies using this method have been done on semen from healthy bulls. Such information is required to optimise addition of antibiotics to semen extenders to inhibit growth of bacteria. With the increasing emergence of antibacterial resistance, it is important to identify alternatives to antibiotics in semen preservation. Possible solutions are to use plant-based substances that exhibit antimicrobial properties or to separate spermatozoa from bacteria in semen samples. The aims of this thesis were to identify the seminal microbiome of healthy bulls, to assess individual differences and their influence on fertility as well as seasonal differences in the occurrence of bacteria and their possible impacts on sperm quality. A second aim was to explore alternatives to antibiotics to reduce bacteria, using plant extracts or by physical removal of bacteria from semen samples. The studies revealed individual differences in bull seminal microbiota that may be correlated with fertility. Seasonal differences were observed in the bacteria in commercial semen samples; however, no significant associations were found between specific bacteria and sperm quality. When evaluating alternatives to antibiotics, we noted that curcumin extract at a concentration of 5% reduced the bacterial count and had a slight positive effect on bull sperm kinematics without negatively affecting sperm viability. Single layer centrifugation (SLC) effectively removed bacteria from bull semen samples while simultaneously selecting good quality spermatozoa. More studies are needed to investigate the influence of certain bacteria on bull sperm quality. The effects of combinations of plant-based substances on bacterial reduction and sperm quality could be investigated, and also further possibilities with SLC. These methods could contribute to reducing the development of antimicrobial resistance

    Animal Welfare Assessment Protocols for Bulls in Artificial Insemination Centers: Requirements, Principles, and Criteria

    Get PDF
    During the last 70 years, the bull semen industry has been trying to maximize reproduction efficiency to meet demands. Changes in public attitudes towards the conditions under which domestic animals are kept have led to questions being raised about animal husbandry and its impact on animal welfare. Protocols for bull welfare assessment in artificial insemination centers and how welfare disturbances can reflect on bull productivity have not previously been taken into consideration. Welfare is important for the bull industry because, apart from the known consequences of stress on reproductive parameters and performance, stress can also influence the onset of puberty and cause other health problems. Therefore, it would be useful to have an early indicator of an incipient welfare problem so that countermeasures could be taken in time to prevent such long-term effects on the animals. Different protocols have been developed for specific animal species and production groups/systems based on their biology, husbandry, management, and breeding, and care guidelines formulated. Different housing conditions, poor feeding during rearing and production, as well as poor health status have all been shown to affect bulls negatively and are reflected in sperm quality and animal fertility.Animal welfare is a complex subject; as such, it requires a multidimensional approach with the main aim of providing the animals with the "five freedoms". The violations of any one of these freedoms could have an influence on animal wellbeing on different levels. Over the years, many welfare quality protocols were developed in the EU thanks to the Welfare Quality((R)) project. Unfortunately, there is a lack of such summarized information about bull welfare assessment in artificial insemination stations or about how disturbed welfare can be reflected in their productivity. Animal reproduction is the basis for the production of meat and milk; therefore, factors contributing to reduced fertility in bulls are not only indicators of animal welfare but also have implications for human health and the environment. Optimizing the reproductive efficiency of bulls at an early age can help to reduce greenhouse gas emissions. In this review, welfare quality assessment will be evaluated for these production animals using reproduction efficiency as a key area, focusing on stress as a main effect of poor animal welfare and, thereby, reduced fertility. We will address various welfare aspects and possible changes in resources or management to improve outcomes

    Effect of Some Plant-Based Substances on Microbial Content and Sperm Quality Parameters of Bull Semen

    Get PDF
    The rapid emergence of antibacterial resistance requires alternatives to antibiotics to be found, including for semen preservation. One of the possible alternatives would be to use plant-based substances with known antimicrobial effects. The objective of this study was to test the antimicrobial effect of pomegranate powder, ginger, and curcumin extract in two concentrations on bull semen microbiota after exposure for <2 h and 24 h. An additional aim was to evaluate the effect of these substances on sperm quality parameters. The bacterial count in semen was low from the beginning; however, a reduction was present for all tested substances compared with control. A reduction in bacterial count in control samples was also observed with time. Curcumin at a concentration of 5%, reduced bacterial count by 32% and was the only substance that had a slight positive effect on sperm kinematics. The other substances were associated with a decline in sperm kinematics and viability. Neither concentration of curcumin had a deleterious effect on sperm viability parameters measured by flow cytometry. The results of this study indicate that curcumin extract at a concentration of 5% can reduce the bacterial count and does not have a negative influence on bull sperm quality

    Single layer centrifugation as a method for bacterial reduction in bull semen for assisted reproduction

    Get PDF
    Semen samples contain bacteria originating from the animal urogenital tract, environment, and/or contamination during semen processing, negatively affecting sperm quality by producing toxins and/or competing for nutrients in extenders. The aims of this study were to evaluate two methods of Single-layer centrifuges (SLC), high and low density colloid, as a method for bacterial removal from bull semen, and to evaluate sperm quality after treatment. In total, semen samples from 20 bulls (3 ejaculates per bull) were used in this study. Bacterial reduction was evaluated by bacterial quantification (colony forming unit - CFU/mL) while bacterial identification was performed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) after culturing bacteria on blood agar. Sperm motility parameters were evaluated by Computer Assisted Sperm Analyses (CASA), and sperm chromatin structure assay (SCSA) by Flow cytometry. Both, High and Low density SLC reduced number of bacteria significantly (p < 0.001) compared with control. The difference in bacterial count between High and Low SLC was also significant (p < 0.001). Furthermore, High density SLC was successful in removing almost all Bacillus and Proteus spp. Most CASA parameters were significantly improved after both treatments (p < 0.001, p < 0.01, p < 0.05). The Deoxyribonucleic acid (DNA) fragmentation index evaluated by SCSA in High (p < 0.01) and Low (p < 0.05) SLC group differed significantly compared with control. Single-layer centrifugation (SLC) with either a high or a low density colloid is a suitable method for bacterial removal in bull semen

    Reduced bacterial load in stallion semen by modified single layer centrifugation or sperm washing

    Get PDF
    The presence of bacteria poses a significant challenge to the quality of stallion semen used in artificial insemination. The bacterial content of insemination doses arises from various sources, such as the healthy stallion, environment, and collection equipment, and is implicated in fertility problems as well as reduced sperm quality during storage. The conventional approach of adding antibiotics to semen extenders raises concerns about antimicrobial resistance and potential negative effects on sperm characteristics, and may not be effective in inhibiting all bacteria. The objective of this study was to determine whether an innovative alternative to antibiotic usage – centrifugation through a single layer of a low density colloid (SLC) – could reduce the bacterial load in stallion semen, and to compare sperm characteristics in samples arising from this procedure, or simple extension of the ejaculate in semen extender, or from sperm washing, i.e. adding extender and then centrifuging the sample to allow the removal of most of the seminal plasma and extender. Eighteen semen samples were collected from six stallions. The semen samples were split and extended prior to washing or SLC, or received no further treatment other than extension. After preparation aliquots from each type of sample were sent for bacteriological examination; the remaining samples were stored for up to 72 h, with daily checks on sperm quality. The low density colloid SLC outperformed sperm washing or extension for bacterial reduction, effectively removing several bacterial species. The bacterial load in the samples was as follows: extended semen, 16 ± 6.7 × 105 ; washed, 5.8 ± 2.0 × 105 ; SLC, 2.3 ± 0.88 × 105 ,

    Identification of bull semen microbiome by 16S sequencing and possible relationships with fertility

    Get PDF
    Reports on the use of 16S sequencing for the identification of bacteria in healthy animals are lacking. Bacterial contamination of bull semen can have a negative effect on the sperm quality. The aims of this study were threefold: to identify bacteria in the semen of healthy bulls using 16S sequencing; to investigate the differences in the bacterial community between individual bulls; and to establish if there was a relationship between the bacteria isolated and bull fertility. Semen from 18 bulls of known fertility was used for the DNA extraction and 16S sequencing; 107 bacterial genera were identified. The differences in the amplicon sequence variants (ASVs) and the numbers of genera between bulls were noted. Negative correlations (p < 0.05) between several bacterial genera with Curvibacter, Rikenellaceae RC9-gut-group and Dyella spp. were seen. Other negatively correlated bacteria were Cutibacterium, Ruminococcaceae UCG-005, Ruminococcaceae UCG-010 and Staphylococcus, all within the top 20 genera. Two genera, W5053 and Lawsonella, were enriched in bulls of low fertility; this is the first time that these bacteria have been reported in bull semen samples. The majority of the bacteria were environmental organisms or were species originating from the mucous membranes of animals and humans. The results of this study indicate that differences in the seminal microbiota of healthy bulls occur and might be correlated with fertility

    Effect of Some Plant-Based Substances on Microbial Content and Sperm Quality Parameters of Bull Semen

    No full text
    The rapid emergence of antibacterial resistance requires alternatives to antibiotics to be found, including for semen preservation. One of the possible alternatives would be to use plant-based substances with known antimicrobial effects. The objective of this study was to test the antimicrobial effect of pomegranate powder, ginger, and curcumin extract in two concentrations on bull semen microbiota after exposure for &lt;2 h and 24 h. An additional aim was to evaluate the effect of these substances on sperm quality parameters. The bacterial count in semen was low from the beginning; however, a reduction was present for all tested substances compared with control. A reduction in bacterial count in control samples was also observed with time. Curcumin at a concentration of 5%, reduced bacterial count by 32% and was the only substance that had a slight positive effect on sperm kinematics. The other substances were associated with a decline in sperm kinematics and viability. Neither concentration of curcumin had a deleterious effect on sperm viability parameters measured by flow cytometry. The results of this study indicate that curcumin extract at a concentration of 5% can reduce the bacterial count and does not have a negative influence on bull sperm quality

    Effect of Some Plant-Based Substances on Microbial Content and Sperm Quality Parameters of Bull Semen

    No full text
    The rapid emergence of antibacterial resistance requires alternatives to antibiotics to be found, including for semen preservation. One of the possible alternatives would be to use plant-based substances with known antimicrobial effects. The objective of this study was to test the antimicrobial effect of pomegranate powder, ginger, and curcumin extract in two concentrations on bull semen microbiota after exposure for <2 h and 24 h. An additional aim was to evaluate the effect of these substances on sperm quality parameters. The bacterial count in semen was low from the beginning; however, a reduction was present for all tested substances compared with control. A reduction in bacterial count in control samples was also observed with time. Curcumin at a concentration of 5%, reduced bacterial count by 32% and was the only substance that had a slight positive effect on sperm kinematics. The other substances were associated with a decline in sperm kinematics and viability. Neither concentration of curcumin had a deleterious effect on sperm viability parameters measured by flow cytometry. The results of this study indicate that curcumin extract at a concentration of 5% can reduce the bacterial count and does not have a negative influence on bull sperm quality

    Alternatives to Antibiotics in Semen Extenders Used in Artificial Insemination

    No full text
    Antimicrobial resistance is a serious global threat requiring a widespread response. Both veterinarians and medical doctors should restrict antibiotic usage to therapeutic use only, after determining the sensitivity of the causal organism. However, the addition of antibiotics to semen extenders for animal artificial insemination represents a hidden, non-therapeutic use of antimicrobial substances. Artificial insemination for livestock breeding is a huge global enterprise with hundreds of million sperm doses prepared annually. However, reporting of antimicrobial resistance in semen is increasing. This review discusses the consequences of bacteria in semen samples, as well as the effect of antimicrobial substances in semen extenders on bacteria in the environment and even on personnel. Alternatives to antibiotics have been reported in the scientific literature and are reviewed here. The most promising of these, removal of the majority of bacteria by colloid centrifugation, is considered in detail, especially results from an artificial insemination study in pigs. In conclusion, colloid centrifugation is a practical method of physically removing bacteria from semen, which does not induce antibiotic resistance. Sperm quality in stored semen samples may be improved at the same time

    Identification of Bull Semen Microbiome by 16S Sequencing and Possible Relationships with Fertility

    No full text
    Reports on the use of 16S sequencing for the identification of bacteria in healthy animals are lacking. Bacterial contamination of bull semen can have a negative effect on the sperm quality. The aims of this study were threefold: to identify bacteria in the semen of healthy bulls using 16S sequencing; to investigate the differences in the bacterial community between individual bulls; and to establish if there was a relationship between the bacteria isolated and bull fertility. Semen from 18 bulls of known fertility was used for the DNA extraction and 16S sequencing; 107 bacterial genera were identified. The differences in the amplicon sequence variants (ASVs) and the numbers of genera between bulls were noted. Negative correlations (p &lt; 0.05) between several bacterial genera with Curvibacter, Rikenellaceae RC9-gut-group and Dyella spp. were seen. Other negatively correlated bacteria were Cutibacterium, Ruminococcaceae UCG-005, Ruminococcaceae UCG-010 and Staphylococcus, all within the top 20 genera. Two genera, W5053 and Lawsonella, were enriched in bulls of low fertility; this is the first time that these bacteria have been reported in bull semen samples. The majority of the bacteria were environmental organisms or were species originating from the mucous membranes of animals and humans. The results of this study indicate that differences in the seminal microbiota of healthy bulls occur and might be correlated with fertility
    corecore