329 research outputs found
The Fixed Landscape Inference MethOd (flimo): a versatile alternative to Approximate Bayesian Computation, faster by several orders of magnitude
Modelling in biology must adapt to increasingly complex and massive data. The
efficiency of the inference algorithms used to estimate model parameters is
therefore questioned. Many of these are based on stochastic optimization
processes that require significant computing time. We introduce the Fixed
Landscape Inference MethOd (flimo), a new likelihood-free inference method for
continuous state-space stochastic models. It applies deterministic
gradient-based optimization algorithms to obtain a point estimate of the
parameters, minimizing the difference between the data and some simulations
according to some prescribed summary statistics. In this sense, it is analogous
to Approximate Bayesian Computation (ABC). Like ABC, it can also provide an
approximation of the distribution of the parameters. Three applications are
proposed: a usual theoretical example, namely the inference of the parameters
of g-and-k distributions; a population genetics problem, not so simple as it
seems, namely the inference of a selective value from time series in a
Wright-Fisher model; and simulations from a Ricker model, representing chaotic
population dynamics. In the two first applications, the results show a drastic
reduction of the computational time needed for the inference phase compared to
the other methods, despite an equivalent accuracy. Even when likelihood-based
methods are applicable, the simplicity and efficiency of flimo make it a
compelling alternative. Implementations in Julia and in R are available on
https://metabarcoding.org/flimo. To run flimo, the user must simply be able to
simulate data according to the chosen model
ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases
<p>Abstract</p> <p>Background</p> <p>During the last 15 years the internal transcribed spacer (ITS) of nuclear DNA has been used as a target for analyzing fungal diversity in environmental samples, and has recently been selected as the standard marker for fungal DNA barcoding. In this study we explored the potential amplification biases that various commonly utilized ITS primers might introduce during amplification of different parts of the ITS region in samples containing mixed templates ('environmental barcoding'). We performed <it>in silico </it>PCR analyses with commonly used primer combinations using various ITS datasets obtained from public databases as templates.</p> <p>Results</p> <p>Some of the ITS primers, such as ITS1-F, were hampered with a high proportion of mismatches relative to the target sequences, and most of them appeared to introduce taxonomic biases during PCR. Some primers, e.g. ITS1-F, ITS1 and ITS5, were biased towards amplification of basidiomycetes, whereas others, e.g. ITS2, ITS3 and ITS4, were biased towards ascomycetes. The assumed basidiomycete-specific primer ITS4-B only amplified a minor proportion of basidiomycete ITS sequences, even under relaxed PCR conditions. Due to systematic length differences in the ITS2 region as well as the entire ITS, we found that ascomycetes will more easily amplify than basidiomycetes using these regions as targets. This bias can be avoided by using primers amplifying ITS1 only, but this would imply preferential amplification of 'non-dikarya' fungi.</p> <p>Conclusions</p> <p>We conclude that ITS primers have to be selected carefully, especially when used for high-throughput sequencing of environmental samples. We suggest that different primer combinations or different parts of the ITS region should be analyzed in parallel, or that alternative ITS primers should be searched for.</p
Prey Preference of Snow Leopard (Panthera uncia) in South Gobi, Mongolia
International audienceAccurate information about the diet of large carnivores that are elusive and inhabit inaccessible terrain, is required to properly design conservation strategies. Predation on livestock and retaliatory killing of predators have become serious issues throughout the range of the snow leopard. Several feeding ecology studies of snow leopards have been conducted using classical approaches. These techniques have inherent limitations in their ability to properly identify both snow leopard feces and prey taxa. To examine the frequency of livestock prey and nearly-threatened argali in the diet of the snow leopard, we employed the recently developed DNA-based diet approach to study a snow leopard population located in the Tost Mountains, South Gobi, Mongolia. After DNA was extracted from the feces, a region of ~100 bp long from mitochondrial 12S rRNA gene was amplified, making use of universal primers for vertebrates and a blocking oligonucleotide specific to snow leopard DNA. The amplicons were then sequenced using a next-generation sequencing platform. We observed a total of five different prey items from 81 fecal samples. Siberian ibex predominated the diet (in 70.4% of the feces), followed by domestic goat (17.3%) and argali sheep (8.6%). The major part of the diet was comprised of large ungulates (in 98.8% of the feces) including wild ungulates (79%) and domestic livestock (19.7%). The findings of the present study will help to understand the feeding ecology of the snow leopard, as well as to address the conservation and management issues pertaining to this wild cat
Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons
Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp). We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column) that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m). We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla), Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm) of sediment was significantly different from deeper layers. We found that qualitative (presence-absence) and quantitative (relative number of reads) data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs) showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation efforts on these bottoms of ecological and economic importance
Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology
<p>Abstract</p> <p>Background</p> <p>The control of mosquitoes transmitting infectious diseases relies mainly on the use of chemical insecticides. However, mosquito control programs are now threatened by the emergence of insecticide resistance. Hitherto, most research efforts have been focused on elucidating the molecular basis of inherited resistance. Less attention has been paid to the short-term response of mosquitoes to insecticides and pollutants which could have a significant impact on insecticide efficacy. Here, a combination of LongSAGE and Solexa sequencing was used to perform a deep transcriptome analysis of larvae of the dengue vector <it>Aedes aegypti </it>exposed for 48 h to sub-lethal doses of three chemical insecticides and three anthropogenic pollutants.</p> <p>Results</p> <p>Thirty millions 20 bp cDNA tags were sequenced, mapped to the mosquito genome and clustered, representing 6850 known genes and 4868 additional clusters not located within predicted genes. Mosquitoes exposed to insecticides or anthropogenic pollutants showed considerable modifications of their transcriptome. Genes encoding cuticular proteins, transporters, and enzymes involved in the mitochondrial respiratory chain and detoxification processes were particularly affected. Genes and molecular mechanisms potentially involved in xenobiotic response and insecticide tolerance were identified.</p> <p>Conclusions</p> <p>The method used in the present study appears as a powerful approach for investigating fine transcriptome variations in genome-sequenced organisms and can provide useful informations for the detection of novel transcripts. At the biological level, despite low concentrations and no apparent phenotypic effects, the significant impact of these xenobiotics on mosquito transcriptomes raise important questions about the 'hidden impact' of anthropogenic pollutants on ecosystems and consequences on vector control.</p
Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA
We assessed spatio-temporal patterns of diversity in deep-sea sediment communities using metabarcoding. We chose a recently developed eukaryotic marker based on the v7 region of the 18S rRNA gene. Our study was performed in a submarine canyon and its adjacent slope in the Northwestern Mediterranean Sea, sampled along a depth gradient at two different seasons. We found a total of 5,569 molecular operational taxonomic units (MOTUs), dominated by Metazoa, Alveolata and Rhizaria. Among metazoans, Nematoda, Arthropoda and Annelida were the most diverse. We found a marked heterogeneity at all scales, with important differences between layers of sediment and significant changes in community composition with zone (canyon vs slope), depth, and season. We compared the information obtained from metabarcoding DNA and RNA and found more total MOTUs and more MOTUs per sample with DNA (ca. 20% and 40% increase, respectively). Both datasets showed overall similar spatial trends, but most groups had higher MOTU richness with the DNA template, while others, such as nematodes, were more diverse in the RNA dataset. We provide metabarcoding protocols and guidelines for biomonitoring of these key communities in order to generate information applicable to management efforts
Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding
DNA barcoding should provide rapid, accurate and automatable species identifications by using a standardized DNA region as a tag. Based on sequences available in GenBank and sequences produced for this study, we evaluated the resolution power of the whole chloroplast trnL (UAA) intron (254–767 bp) and of a shorter fragment of this intron (the P6 loop, 10–143 bp) amplified with highly conserved primers. The main limitation of the whole trnL intron for DNA barcoding remains its relatively low resolution (67.3% of the species from GenBank unambiguously identified). The resolution of the P6 loop is lower (19.5% identified) but remains higher than those of existing alternative systems. The resolution is much higher in specific contexts such as species originating from a single ecosystem, or commonly eaten plants. Despite the relatively low resolution, the whole trnL intron and its P6 loop have many advantages: the primers are highly conserved, and the amplification system is very robust. The P6 loop can even be amplified when using highly degraded DNA from processed food or from permafrost samples, and has the potential to be extensively used in food industry, in forensic science, in diet analyses based on feces and in ancient DNA studies
UniPathway: a resource for the exploration and annotation of metabolic pathways
UniPathway (http://www.unipathway.org) is a fully manually curated resource for the representation and annotation of metabolic pathways. UniPathway provides explicit representations of enzyme-catalyzed and spontaneous chemical reactions, as well as a hierarchical representation of metabolic pathways. This hierarchy uses linear subpathways as the basic building block for the assembly of larger and more complex pathways, including species-specific pathway variants. All of the pathway data in UniPathway has been extensively cross-linked to existing pathway resources such as KEGG and MetaCyc, as well as sequence resources such as the UniProt KnowledgeBase (UniProtKB), for which UniPathway provides a controlled vocabulary for pathway annotation. We introduce here the basic concepts underlying the UniPathway resource, with the aim of allowing users to fully exploit the information provided by UniPathwa
Macro-nutritional balancing in a circumpolar boreal ruminant under winter conditions
1. Differences in botanical diet compositions among a large number of moose faecal samples collected during winter correlated with the nutritional differences identified in the same samples (Mantel r = 0.89, p = 0.001), but the nutritional differences were significantly smaller (p 0).3. Available protein (AP) and total non-structural carbohydrates (TNC) were significantly correlated in observed diets but not in hypothetical diets based on food availability.4. The level of Acetoacetate in moose serum (i.e. "starvation') was weakly negatively associated with digestibility of diets (p = 0.08) and unrelated to increasing AP:TNC and AP:NDF ratios in diets (p > 0.1).5. Our study is the first to demonstrate complementary feeding in free-ranging moose to attain a nutritional target that has previously been suggested in a feeding trial with captive moose. Our results add support to the hypothesis of nutritional balancing as a driver in the nutritional strategy of moose with implications for both the management of moose and food resources
- …