260 research outputs found

    Flight Tests, Performances and Flight Certification of a Twin-Engine Light Aircraft

    Get PDF
    This paper deals with flight test activities performed on P2006T, a twin-engine light aircraft recently designed and produced by Tecnam. Research activities and flight tests have been conducted during the flight certification of P2006T for the normal category under CS-23. All the acquired data and flight results presented have been focused on both aircraft certification and on aircraft performances, stability and flight qualities measurement. The data have been acquired through a light, accurate and reliable flight instrumentation available at DIAS (Department of Aerospace Engineering). Some flight data about aircraft leveled speed, stall speed, climb characteristics and ground performances (take-off and landing) will be presented. After preliminary flight tests, winglets have been designed and added to the final configuration in order to obtain good climb performances also in OEI (One Engine Inoperative) conditions. Accurate stall tests have been performed in all configurations and influence of both entry-rate and load factor on stall speed have been highlighted. Excellent ground performances have been measured with short take-off and landing distances compared with similar airplanes. All measured flight performances can be considered very good for this aircraft category and have been used to demonstrate aircraft safety and to obtain CS23 certification

    Design of a Three Surfaces R/C Aircraft Model

    Get PDF
    Design of a three lifting surfaces radio-controlled model has been carried out at Dipartimento di Progettazione Aeronautica (DPA) by the authors in the last year. The model is intended to be a UAV prototype and is now under construction. The main goal of this small aircraft's design is to check the influence of the canard surface on the aircraft's aerodynamic characteristics and flight behavior, especially at high angles of attack. The aircraft model is also intended to be a flying platform to test sensors, measurement and acquisition systems for research purposes and a valid and low-cost teaching instrument for flight dynamics and flight maneuvering. The aircraft has been designed to fly with and without canard, and all problems relative to aircraft balance and stability have been carefully analyzed and solved. The innovative configuration and the mixed wooden-composite material structure has been obtained with very simple shapes and all the design is focused on realizing a low-cost model. A complete aerodynamic analysis of the configuration up to high angles of attack and a preliminary aircraft stability and performance prediction will be presented

    Design of a Three Surfaces R/C Aircraft Model

    Get PDF
    Design of a three lifting surfaces radio-controlled model has been carried out at Dipartimento di Progettazione Aeronautica (DPA) by the authors in the last year. The model is intended to be a UAV prototype and is now under construction. The main goal of this small aircraft's design is to check the influence of the canard surface on the aircraft's aerodynamic characteristics and flight behavior, especially at high angles of attack. The aircraft model is also intended to be a flying platform to test sensors, measurement and acquisition systems for research purposes and a valid and low-cost teaching instrument for flight dynamics and flight maneuvering. The aircraft has been designed to fly with and without canard, and all problems relative to aircraft balance and stability have been carefully analyzed and solved. The innovative configuration and the mixed wooden-composite material structure has been obtained with very simple shapes and all the design is focused on realizing a low-cost model. A complete aerodynamic analysis of the configuration up to high angles of attack and a preliminary aircraft stability and performance prediction will be presented

    Post-stroke depression increases disability more than 15% in ischemic stroke survivors: a case-control study

    Get PDF
    We performed a retrospective, case-control study in consecutive ischemic stroke patients admitted to our stroke rehabilitation unit. Patients were matched for severity of neurological impairment (evaluated with the Canadian Neurological Scale, CNS), age (difference within 1 year), and onset admission interval (difference within 3 days). Participants were divided into two subgroups according to the presence or absence of PSD. Aim was to assess the specific influence of post-stroke depression (PSD) and antidepressant treatment on both basal functional status and rehabilitation outcomes. All PSD patients were treated primarily with serotoninergic antidepressants (AD). The final sample included 280 patients with depression (out of 320 found in a whole case series of 993 ischemic patients, i.e., 32.25%) and 280 without depression. Forty patients with depression were excluded because they had a history of severe psychiatric illness or aphasia, with a severe comprehension deficit. On one hand, PSD patients obtained lower Barthel Index (BI) and Rivermead Mobility Index (RMI) scores at both admission and discharge, with minor effectiveness of rehabilitative treatment and longer length of stay; on the other hand, this group had a lower percentage of dropouts. Lastly, PSD patients showed a different functional outcome, based on their response to antidepressant therapy, that was significantly better in responders than in non-responders (13.13%). Our results confirm the unfavorable influence of PSD on functional outcome, despite pharmacological treatment

    Temperature analysis in the shock waves regime for gas-filled plasma capillaries in plasma-based accelerators

    Get PDF
    Plasma confinement represents a crucial point for plasma-based accelerators and plasma lenses because it can strongly affect the beam properties. For this reason, an accurate measurement of the plasma parameters, as plasma temperature, pressure and electron density, must be performed. In this paper, we introduce a novel method to detect the plasma temperature and the pressure for gas-filled capillaries in use at the SPARC-LAB test facility. The proposed method is based on the shock waves produced at the ends of the capillary during the gas discharge and the subsequent plasma formation inside it. By measuring the supersonic speed of the plasma outflow, the thermodynamic parameters have been obtained both outside and inside the capillary. A plasma temperature around 1.4 eV has been measured, that depends on the geometric properties and the operating conditions of the capillary

    Effects of Walking Endurance Reduction on Gait Stability in Patients with Stroke

    Get PDF
    Control of gait is usually altered following stroke, and it may be further compromised by overexertion and fatigue. This study aims to quantitatively assess patients' gait stability during six-minute walking, measuring upper body accelerations of twenty patients with stroke (64 ± 13 years old) and ten age-matched healthy subjects (63 ± 10 years old). Healthy subjects showed a steady gait in terms of speed and accelerations over the six minutes. Conversely, the patients unable to complete the test (n = 8) progressively reduced their walking speed (−22 ± 11%, confidence interval CI95%: −13, −29%, P = 0.046). Patients able to complete the test (n = 12) did not vary their walking speed over time (P = 0.493). However, this ability was not supported by an adequate capacity to maintain their gait stability, as shown by a progressive increase of their upper body accelerations (+5 ± 11%, CI95%: −1; +12%, P = 0.010). Walking endurance and gait stability should be both quantitatively assessed and carefully improved during the rehabilitation of patients with stroke

    Focusing of high-brightness electron beams with active-plasma lenses

    Get PDF
    Plasma-based technology promises a tremendous reduction in size of accelerators used for research, medical, and industrial applications, making it possible to develop tabletop machines accessible for a broader scientific community. By overcoming current limits of conventional accelerators and pushing particles to larger and larger energies, the availability of strong and tunable focusing optics is mandatory also because plasma-accelerated beams usually have large angular divergences. In this regard, active-plasma lenses represent a compact and affordable tool to generate radially symmetric magnetic fields several orders of magnitude larger than conventional quadrupoles and solenoids. However, it has been recently proved that the focusing can be highly nonlinear and induce a dramatic emittance growth. Here, we present experimental results showing how these nonlinearities can be minimized and lensing improved. These achievements represent a major breakthrough toward the miniaturization of next-generation focusing devices

    Toward a Multifaceted Heuristic of Digital Reading to Inform Assessment, Research, Practice, and Policy

    Get PDF
    In this commentary, the author explores the tension between almost 30 years of work that has embraced increasingly complex conceptions of digital reading and recent studies that risk oversimplifying digital reading as a singular entity analogous with reading text on a screen. The author begins by tracing a line of theoretical and empirical work that both informs and complicates our understanding of digital literacy and, more specifically, digital reading. Then, a heuristic is proposed to systematically organize, label, and define a multifaceted set of increasingly complex terms, concepts, and practices that characterize the spectrum of digital reading experiences. Research that informs this heuristic is used to illustrate how more precision in defining digital reading can promote greater clarity across research methods and advance a more systematic study of promising digital reading practices. Finally, the author discusses implications for assessment, research, practice, and policy
    • 

    corecore