44 research outputs found

    Double versus single intrauterine insemination (IUI) in stimulated cycles for subfertile couples

    Get PDF
    Background In subfertile couples, couples who have tried to conceive for at least one year, intrauterine insemination (IUI) with ovarian hyperstimulation (OH) is one of the treatment modalities that can be offered. When IUI is performed a second IUI in the same cycle might add to the chances of conceiving. In a previous update of this review in 2010 it was shown that double IUI increases pregnancy rates when compared to single IUI. Since 2010, different clinical trials have been published with differing conclusions about whether double WI increases pregnancy rates compared to single IUI. Objectives To determine the effectiveness and safety of double intrauterine insemination (IUI) compared to single IUI in stimulated cycles for subfertile couples. Search methods We searched the Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL, MEDLI NE, Embase and CINAHL in July 2020 and LILACS, Google scholar and Epistemoni kos in February 2021, together with reference checking and contact with study authors and experts in the field to identify additional studies. Selection criteria We included randomised controlled, parallel trials of double versus single lUls in stimulated cycles in subfertile couples. Data collection and analysis Two authors independently assessed trial quality and extracted data. We contacted study authors for additional information. Main results We identified in nine studies involving subfertile women. The evidence was of low quality; the main limitations were unclear risk of bias, inconsistent results for some outcomes and imprecision, due to small trials with imprecise results. We are uncertain whether double IUI improves live birth rate compared to single IUI (odds ratio (OR) 1.15, 95% confidence interval (CI) 0.71 to 1.88; I-2 = 29%; studies= 3, participants =468; low quality evidence). The evidence suggests that if the chance of live birth following single IUI is 16%, the chance of live birth following double IUI would be between 12% and 27%. Performing a sensitivity analysis restricted to only randomised controlled trials (RCTs) with low risk of selection bias showed similar results. We are uncertain whether double IUI reduces miscarriage rate compared to single IUI (OR 1.78, 95% CI 0.98 to 3.24; I-2 = 0%; studies = 6, participants = 2363; low quality evidence). The evidence suggests that chance of miscarriage following single IUI is 1.5% and the chance following double IUI would be between 1.5% and 5%. The reported clinical pregnancy rate per woman randomised may increase with double 11.11 group (OR 1.51, 95% CI 1.23 to 1.86; I-2 = 34%; studies = 9, participants = 2716; low quality evidence). This result should be interpreted with caution due to the low quality of the evidence and the moderate inconsistency. The evidence suggests that the chance of a pregnancy following single IUI is 14% and the chance following double IUI would be between 16% and 23%. We are uncertain whether double IUI affects multiple pregnancy rate compared to single IUI (OR 2.04, 95% CI 0.91 to 4.56; I-2 = 8%; studies = 5; participants = 2203; low quality evidence). The evidence suggests that chance of multiple pregnancy following single IUI is 0.7% and the chance following double ILA would be between 0.85% and 3.7%. We are uncertain whether double IUI has an effect on ectopic pregnancy rate compared to single IUI (OR 1.22, 95% CI 0.35 to 4.28; I-2 = 0%; studies =4, participants= 1048; low quality evidence). The evidence suggests that the chance of an ectopic pregnancy following single IUI is 0.8% and the chance following double IUI would be between 0.3% and 3.2%. Authors' conclusions Our main analysis, of which the evidence is low quality, shows that we are uncertain if double IUI improves live birth and reduces miscarriage compared to single IUI. Our sensitivity analysis restricted to studies of low risk of selection bias for both outcomes is consistent with the main analysis. Clinical pregnancy rate may increase in the double IUI group, but this should be interpreted with caution due to the low quality evidence. We are uncertain whether double IUI has an effect on multiple pregnancy rate and ectopic pregnancy rate compared to single IUI

    Antigen-specific active immunotherapy for ovarian cancer

    Get PDF
    BACKGROUND: This is the second update of the review first published in the Cochrane Library (2010, Issue 2) and later updated (2014, Issue 9).Despite advances in chemotherapy, the prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce tumour antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES: Primary objective• To assess the clinical efficacy of antigen-specific active immunotherapy for the treatment of ovarian cancer as evaluated by tumour response measured by Response Evaluation Criteria In Solid Tumors (RECIST) and/or cancer antigen (CA)-125 levels, response to post-immunotherapy treatment, and survival differences◦ In addition, we recorded the numbers of observed antigen-specific humoral and cellular responsesSecondary objective• To establish which combinations of immunotherapeutic strategies with tumour antigens provide the best immunological and clinical results SEARCH METHODS: For the previous version of this review, we performed a systematic search of the Cochrane Central Register of Controlled Trials (CENTRAL; 2009, Issue 3), in the Cochrane Library, the Cochrane Gynaecological Cancer Group Specialised Register, MEDLINE and Embase databases, and clinicaltrials.gov (1966 to July 2009). We also conducted handsearches of the proceedings of relevant annual meetings (1996 to July 2009).For the first update of this review, we extended the searches to October 2013, and for this update, we extended the searches to July 2017. SELECTION CRITERIA: We searched for randomised controlled trials (RCTs), as well as non-randomised studies (NRSs), that included participants with epithelial ovarian cancer, irrespective of disease stage, who were treated with antigen-specific active immunotherapy, irrespective of type of vaccine, antigen used, adjuvant used, route of vaccination, treatment schedule, and reported clinical or immunological outcomes. DATA COLLECTION AND ANALYSIS: Two reviews authors independently extracted the data. We evaluated the risk of bias for RCTs according to standard methodological procedures expected by Cochrane, and for NRSs by using a selection of quality domains deemed best applicable to the NRS. MAIN RESULTS: We included 67 studies (representing 3632 women with epithelial ovarian cancer). The most striking observations of this review address the lack of uniformity in conduct and reporting of early-phase immunotherapy studies. Response definitions show substantial variation between trials, which makes comparison of trial results unreliable. Information on adverse events is frequently limited. Furthermore, reports of both RCTs and NRSs frequently lack the relevant information necessary for risk of bias assessment. Therefore, we cannot rule out serious biases in most of the included trials. However, selection, attrition, and selective reporting biases are likely to have affected the studies included in this review. GRADE ratings were high only for survival; for other primary outcomes, GRADE ratings were very low.The largest body of evidence is currently available for CA-125-targeted antibody therapy (17 studies, 2347 participants; very low-certainty evidence). Non-randomised studies of CA-125-targeted antibody therapy suggest improved survival among humoral and/or cellular responders, with only moderate adverse events. However, four large randomised placebo-controlled trials did not show any clinical benefit, despite induction of immune responses in approximately 60% of participants. Time to relapse with CA-125 monoclonal antibody versus placebo, respectively, ranged from 10.3 to 18.9 months versus 10.3 to 13 months (six RCTs, 1882 participants; high-certainty evidence). Only one RCT provided data on overall survival, reporting rates of 80% in both treatment and placebo groups (three RCTs, 1062 participants; high-certainty evidence). Other small studies targeting many different tumour antigens have presented promising immunological results. As these strategies have not yet been tested in RCTs, no reliable inferences about clinical efficacy can be made. Given the promising immunological results and the limited side effects and toxicity reported, exploration of clinical efficacy in large well-designed RCTs may be worthwhile. AUTHORS' CONCLUSIONS: We conclude that despite promising immunological responses, no clinically effective antigen-specific active immunotherapy is yet available for ovarian cancer. Results should be interpreted cautiously, as review authors found a significant dearth of relevant information for assessment of risk of bias in both RCTs and NRSs

    The INeS study: prevention of multiple pregnancies: a randomised controlled trial comparing IUI COH versus IVF e SET versus MNC IVF in couples with unexplained or mild male subfertility

    Get PDF
    BACKGROUND Multiple pregnancies are high risk pregnancies with higher chances of maternal and neonatal mortality and morbidity. In the past decades the number of multiple pregnancies has increased. This trend is partly due to the fact that women start family planning at an increased age, but also due to the increased use of ART. Couples with unexplained or mild male subfertility generally receive intrauterine insemination IUI with controlled hormonal stimulation (IUI COH). The cumulative pregnancy rate is 40%, with a 10% multiple pregnancy rate. This study aims to reveal whether alternative treatments such as IVF elective Single Embryo Transfer (IVF e SET) or Modified Natural Cycle IVF (MNC IVF) can reduce the number of multiple pregnancy rates, but uphold similar pregnancy rates as IUI COH in couples with mild male or unexplained subfertility. Secondly, the aim is to perform a cost effective analyses and assess treatment preference of these couples. METHODS/DESIGN We plan a multicentre randomised controlled clinical trial in the Netherlands comparing six cycles of intra-uterine insemination with controlled ovarian hyperstimulation or six cycles of Modified Natural Cycle (MNC) IVF or three cycles with IVF-elective Single Embryo Transfer (eSET) plus cryo-cycles within a time frame of 12 months. Couples with unexplained subfertility or mild male subfertility and a poor prognosis for treatment independent pregnancy will be included. Women with anovulatory cycles, severe endometriosis, double sided tubal pathology or serious endocrine illness will be excluded. Our primary outcome is the birth of a healthy singleton. Secondary outcomes are multiple pregnancy, treatment costs, and patient experiences in each treatment arm. The analysis will be performed according tot the intention to treat principle. We will test for non-inferiority of the three arms with respect to live birth. As we accept a 12.5% loss in pregnancy rate in one of the two IVF arms to prevent multiple pregnancies, we need 200 couples per arm (600 couples in total). DISCUSSION Determining the safest and most cost-effective treatment will ensure optimal chances of pregnancy for subfertile couples with substantially diminished perinatal and maternal complications. Should patients find the most cost-effective treatment acceptable or even preferable, this could imply the need for a world wide shift in the primary treatment. TRIAL REGISTRATION Current Controlled Trials ISRCTN 52843371Alexandra J Bensdorp, Els Slappendel, Carolien Koks, Jur Oosterhuis, Annemieke Hoek, Peter Hompes, Frank Broekmans, Harold Verhoeve, Jan Peter de Bruin, Janne Meije van Weert, Maaike Traas, Jacques Maas, Nicole Beckers, Sjoerd Repping, Ben W Mol, Fulco van der Veen and Madelon van Wel

    Double versus single intrauterine insemination (IUI) in stimulated cycles for subfertile couples

    No full text
    BACKGROUND: In subfertile couples, couples who have tried to conceive for at least one year, intrauterine insemination (IUI) with ovarian hyperstimulation (OH) is one of the treatment modalities that can be offered. When IUI is performed a second IUI in the same cycle might add to the chances of conceiving. In a previous update of this review in 2010 it was shown that double IUI increases pregnancy rates when compared to single IUI. Since 2010, different clinical trials have been published with differing conclusions about whether double IUI increases pregnancy rates compared to single IUI. OBJECTIVES: To determine the effectiveness and safety of double intrauterine insemination (IUI) compared to single IUI in stimulated cycles for subfertile couples. SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL, MEDLINE, Embase and CINAHL in July 2020 and LILACS, Google scholar and Epistemonikos in February 2021, together with reference checking and contact with study authors and experts in the field to identify additional studies. SELECTION CRITERIA: We included randomised controlled, parallel trials of double versus single IUIs in stimulated cycles in subfertile couples. DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial quality and extracted data. We contacted study authors for additional information. MAIN RESULTS: We identified in nine studies involving subfertile women. The evidence was of low quality; the main limitations were unclear risk of bias, inconsistent results for some outcomes and imprecision, due to small trials with imprecise results. We are uncertain whether double IUI improves live birth rate compared to single IUI (odds ratio (OR) 1.15, 95% confidence interval (CI) 0.71 to 1.88; I2 = 29%; studies = 3, participants = 468; low quality evidence). The evidence suggests that if the chance of live birth following single IUI is 16%, the chance of live birth following double IUI would be between 12% and 27%. Performing a sensitivity analysis restricted to only randomised controlled trials (RCTs) with low risk of selection bias showed similar results. We are uncertain whether double IUI reduces miscarriage rate compared to single IUI (OR 1.78, 95% CI 0.98 to 3.24; I2 = 0%; studies = 6, participants = 2363; low quality evidence). The evidence suggests that chance of miscarriage following single IUI is 1.5% and the chance following double IUI would be between 1.5% and 5%. The reported clinical pregnancy rate per woman randomised may increase with double IUI group (OR 1.51, 95% CI 1.23 to 1.86; I2 = 34%; studies = 9, participants = 2716; low quality evidence). This result should be interpreted with caution due to the low quality of the evidence and the moderate inconsistency. The evidence suggests that the chance of a pregnancy following single IUI is 14% and the chance following double IUI would be between 16% and 23%. We are uncertain whether double IUI affects multiple pregnancy rate compared to single IUI (OR 2.04, 95% CI 0.91 to 4.56; I2 = 8%; studies = 5; participants = 2203; low quality evidence). The evidence suggests that chance of multiple pregnancy following single IUI is 0.7% and the chance following double IUI would be between 0.85% and 3.7%. We are uncertain whether double IUI has an effect on ectopic pregnancy rate compared to single IUI (OR 1.22, 95% CI 0.35 to 4.28; I2 = 0%; studies = 4, participants = 1048; low quality evidence). The evidence suggests that the chance of an ectopic pregnancy following single IUI is 0.8% and the chance following double IUI would be between 0.3% and 3.2%. AUTHORS' CONCLUSIONS: Our main analysis, of which the evidence is low quality, shows that we are uncertain if double IUI improves live birth and reduces miscarriage compared to single IUI. Our sensitivity analysis restricted to studies of low risk of selection bias for both outcomes is consistent with the main analysis. Clinical pregnancy rate may increase in the double IUI group, but this should be interpreted with caution due to the low quality evidence. We are uncertain whether double IUI has an effect on multiple pregnancy rate and ectopic pregnancy rate compared to single IUI

    Synchronised approach for intrauterine insemination in subfertile couples

    Get PDF
    Background In many countries intrauterine insemination (IUI) is the treatment of first choice for a subfertile couple when the infertility work up reveals an ovulatory cycle, at least one open Fallopian tube and sufficient spermatozoa. The final goal of this treatment is to achieve a pregnancy and deliver a healthy (singleton) live birth. The probability of conceiving with IUI depends on various factors including age of the couple, type of subfertility, ovarian stimulation and the timing of insemination. IUI should logically be performed around the moment of ovulation. Since spermatozoa and oocytes have only limited survival time correct timing of the insemination is essential. As it is not known which technique of timing for IUI results in the best treatment outcome, we compared different techniques for timing IUI and different time intervals. Objectives To evaluate the effectiveness of different synchronisation methods in natural and stimulated cycles for IUI in subfertile couples. Search methods We searched for all publications which described randomised controlled trials of the timing of IUI. We searched the Cochrane Menstrual Disorders and Subfertility Group Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL) (1966 to October 2014), EMBASE (1974 to October 2014), MEDLINE (1966 to October 2014) and PsycINFO (inception to October 2014) electronic databases and prospective trial registers. Furthermore, we checked the reference lists of all obtained studies and performed a handsearch of conference abstracts. Selection criteria Randomised controlled trials (RCTs) comparing different timing methods for IUI were included. The following interventions were evaluated: detection of luteinising hormone (LH) in urine or blood, single test; human chorionic gonadotropin (hCG) administration; combination of LH detection and hCG administration; basal body temperature chart; ultrasound detection of ovulation; gonadotropin-releasing hormone (GnRH) agonist administration; or other timing methods. Data collection and analysis Two review authors independently selected the trials, extracted the data and assessed study risk of bias. We performed statistical analyses in accordance with the guidelines for statistical analysis developed by The Cochrane Collaboration. The overall quality of the evidence was assessed using GRADE methods. Main results Eighteen RCTs were included in the review, of which 14 were included in the meta-analyses (in total 2279 couples). The evidence was current to October 2013. The quality of the evidence was low or very low for most comparisons. The main limitations in the evidence were failure to describe study methods, serious imprecision and attrition bias. Ten RCTs compared different methods of timing for IUI. We found no evidence of a difference in live birth rates between hCG injection versus LH surge (odds ratio (OR) 1.0, 95% confidence interval (CI) 0.06 to 18, 1 RCT, 24 women, very low quality evidence), urinary hCG versus recombinant hCG (OR 1.17, 95% CI 0.68 to 2.03, 1 RCT, 284 women, low quality evidence) or hCG versus GnRH agonist (OR 1.04, 95% CI 0.42 to 2.6, 3 RCTS, 104 women, I-2 = 0%, low quality evidence). Two RCTs compared the optimum time interval from hCG injection to IUI, comparing different time frames that ranged from 24 hours to 48 hours. Only one of these studies reported live birth rates, and found no difference between the groups (OR 0.52, 95% CI 0.27 to 1.00, 1 RCT, 204 couples). One study compared early versus late hCG administration and one study compared different dosages of hCG, but neither reported the primary outcome of live birth. We found no evidence of a difference between any of the groups in rates of pregnancy or adverse events (multiple pregnancy, miscarriage, ovarian hyperstimulation syndrome (OHSS)). However, most of these data were very low quality. Authors' conclusions There is insufficient evidence to determine whether there is any difference in safety and effectiveness between different methods of synchronization of ovulation and insemination. More research is needed

    The effect of elevated progesterone levels before HCG triggering in modified natural cycle frozen-thawed embryo transfer cycles

    No full text
    Recent studies suggest that elevated late follicular phase progesterone concentrations after ovarian stimulation for IVF may result in embryo–endometrial asynchrony, reducing the chance of successful implantation after fresh embryo transfer. It remains unclear to what extent elevated late follicular phase progesterone levels may occur in unstimulated cycles before frozen–thawed embryo transfer, or what affect they may have on outcomes. In this cohort study, 271 patients randomized to the modified natural cycle arm of a randomized controlled trial comparing two endometrial preparation regimens underwent late follicular phase progesterone and LH testing. A receiver operating characteristic curve was constructed to identify a progesterone cut-off level with the best predictive value for live birth (progesterone level ≥4.6 nmol/l). A total of 24.4% of patients revealed an isolated elevated serum progesterone of 4.6 nmol/l or greater, and 44.3% showed an elevated progesterone level in association with a rise in LH. Neither endocrine disruption affected outcomes, with live birth rates of 12.9% versus 10.6% (OR 0.6, 95% CI 0.19 to 1.9) and 11.9% versus 17.5% (OR 1.6, 95% CI 0.79 to 3.1), respectively. Whether monitoring of progesterone and LH in natural cycle frozen–thawed embryo transfer has added clinical value should studied further.</p

    Intra-uterine insemination for unexplained subfertility

    No full text
    BACKGROUND: Intra-uterine insemination (IUI) is a widely-used fertility treatment for couples with unexplained subfertility. Although IUI is less invasive and less expensive than in vitro fertilisation (IVF), the safety of IUI in combination with ovarian hyperstimulation (OH) is debated. The main concern about IUI treatment with OH is the increase in multiple pregnancy rates. OBJECTIVES: To determine whether, for couples with unexplained subfertility, the live birth rate is improved following IUI treatment with or without OH compared to timed intercourse (TI) or expectant management with or without OH, or following IUI treatment with OH compared to IUI in a natural cycle. SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL and two trials registers up to 17 October 2019, together with reference checking and contact with study authors for missing or unpublished data. SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing IUI with TI or expectant management, both in stimulated or natural cycles, or IUI in stimulated cycles with IUI in natural cycles in couples with unexplained subfertility. DATA COLLECTION AND ANALYSIS: Two review authors independently performed study selection, quality assessment and data extraction. Primary review outcomes were live birth rate and multiple pregnancy rate. MAIN RESULTS: We include 15 trials with 2068 women. The evidence was of very low to moderate quality. The main limitation was very serious imprecision. IUI in a natural cycle versus timed intercourse or expectant management in a natural cycle It is uncertain whether treatment with IUI in a natural cycle improves live birth rate compared to treatment with expectant management in a natural cycle (odds ratio (OR) 1.60, 95% confidence interval (CI) 0.92 to 2.78; 1 RCT, 334 women; low-quality evidence). If we assume the chance of a live birth with expectant management in a natural cycle to be 16%, that of IUI in a natural cycle would be between 15% and 34%. It is uncertain whether treatment with IUI in a natural cycle reduces multiple pregnancy rates compared to control (OR 0.50, 95% CI 0.04 to 5.53; 1 RCT, 334 women; low-quality evidence). IUI in a stimulated cycle versus timed intercourse or expectant management in a stimulated cycle It is uncertain whether treatment with IUI in a stimulated cycle improves live birth rates compared to treatment with TI in a stimulated cycle (OR 1.59, 95% CI 0.88 to 2.88; 2 RCTs, 208 women; I2 = 72%; low-quality evidence). If we assume the chance of achieving a live birth with TI in a stimulated cycle was 26%, the chance with IUI in a stimulated cycle would be between 23% and 50%. It is uncertain whether treatment with IUI in a stimulated cycle reduces multiple pregnancy rates compared to control (OR 1.46, 95% CI 0.55 to 3.87; 4 RCTs, 316 women; I2 = 0%; low-quality evidence). IUI in a stimulated cycle versus timed intercourse or expectant management in a natural cycle In couples with a low prediction score of natural conception, treatment with IUI combined with clomiphene citrate or letrozole probably results in a higher live birth rate compared to treatment with expectant management in a natural cycle (OR 4.48, 95% CI 2.00 to 10.01; 1 RCT; 201 women; moderate-quality evidence). If we assume the chance of a live birth with expectant management in a natural cycle was 9%, the chance of a live birth with IUI in a stimulated cycle would be between 17% and 50%. It is uncertain whether treatment with IUI in a stimulated cycle results in a lower multiple pregnancy rate compared to control (OR 3.01, 95% CI 0.47 to 19.28; 2 RCTs, 454 women; I2 = 0%; low-quality evidence). IUI in a natural cycle versus timed intercourse or expectant management in a stimulated cycle Treatment with IUI in a natural cycle probably results in a higher cumulative live birth rate compared to treatment with expectant management in a stimulated cycle (OR 1.95, 95% CI 1.10 to 3.44; 1 RCT, 342 women: moderate-quality evidence). If we assume the chance of a live birth with expectant management in a stimulated cycle was 13%, the chance of a live birth with IUI in a natural cycle would be between 14% and 34%. It is uncertain whether treatment with IUI in a natural cycle results in a lower multiple pregnancy rate compared to control (OR 1.05, 95% CI 0.07 to 16.90; 1 RCT, 342 women; low-quality evidence). IUI in a stimulated cycle versus IUI in a natural cycle Treatment with IUI in a stimulated cycle may result in a higher cumulative live birth rate compared to treatment with IUI in a natural cycle (OR 2.07, 95% CI 1.22 to 3.50; 4 RCTs, 396 women; I2 = 0%; low-quality evidence). If we assume the chance of a live birth with IUI in a natural cycle was 14%, the chance of a live birth with IUI in a stimulated cycle would be between 17% and 36%. It is uncertain whether treatment with IUI in a stimulated cycle results in a higher multiple pregnancy rate compared to control (OR 3.00, 95% CI 0.11 to 78.27; 2 RCTs, 65 women; low-quality evidence). AUTHORS' CONCLUSIONS: Due to insufficient data, it is uncertain whether treatment with IUI with or without OH compared to timed intercourse or expectant management with or without OH improves cumulative live birth rates with acceptable multiple pregnancy rates in couples with unexplained subfertility. However, treatment with IUI with OH probably results in a higher cumulative live birth rate compared to expectant management without OH in couples with a low prediction score of natural conception. Similarly, treatment with IUI in a natural cycle probably results in a higher cumulative live birth rate compared to treatment with timed intercourse with OH. Treatment with IUI in a stimulated cycle may result in a higher cumulative live birth rate compared to treatment with IUI in a natural cycle

    Measuring patient-centredness, the neglected outcome in fertility care: a random multicentre validation study

    No full text
    BACKGROUND: High-quality fertility care should be effective and safe, but also patient-centred. However, a suitable instrument for measuring patient-centredness is lacking. This study aims to develop and validate an instrument that can reliably measure patient-centredness in fertility care: patient-centredness questionnaire-infertility (PCQ-infertility). METHODS: The PCQ's content, addressing 53 care aspects, was generated by seven focus groups with 54 infertile patients. Besides background questions, the questionnaire included one 'experience item' and one 'importance item' for each care aspect. Thirty Dutch fertility clinics were invited to participate in the validation study. The questionnaire was sent at random to 1200 infertile couples. Psychometric tests included inter-item and reliability analyses. Importance scores were calculated. The discriminative power was determined using multilevel analysis. RESULTS: The questionnaire was completed by 888 infertile couples (net response 75%) from 29 clinics. The ultimate PCQ-infertility, comprising 46 items and seven subscales, appeared reliable and valid for measuring patient-centredness in fertility care. Of the seven subscales, 'communication' received the best ratings and 'continuity' the worst. 'Honesty and clearness on what to expect from fertility care' appeared most important to patients. Significant differences between clinics were found, even after case-mix adjustment. CONCLUSION: This study resulted in a valid, reliable and strongly discriminating instrument for measuring patient-centredness in fertility care. The PCQ-infertility can identify shortcomings on patient-centredness and can be adopted for quality improvement. Therefore, fertility care can now be monitored and benchmarked on patient-centredness, as well as on live birth and complication rates
    corecore