49 research outputs found
Shear induced normal stress differences in aqueous foams
A finite simple shear deformation of an elastic solid induces unequal normal
stresses. This nonlinear phenomenon, known as the Poynting effect, is governed
by a universal relation between shear strain and first normal stresses
difference, valid for non-dissipative elastic materials. We provide the first
experimental evidence that an analog of the Poynting effect exists in aqueous
foams where besides the elastic stress, there are significant viscous or
plastic stresses. These results are interpreted in the framework of a
constitutive model, derived from a physical description of foam rheology
Investigation of shear banding in three-dimensional foams
We study the steady flow properties of different three-dimensional aqueous
foams in a wide gap Couette geometry. From local velocity measurements through
Magnetic Resonance Imaging techniques and from viscosity bifurcation
experiments, we find that these foams do not exhibit any observable signature
of shear banding. This contrasts with two previous results (Rodts et al.,
Europhys. Lett., 69 (2005) 636 and Da Cruz et al., Phys. Rev. E, 66 (2002)
051305); we discuss possible reasons for this dicrepancy. Moreover, the foams
we studied undergo steady flow for shear rates well below the critical shear
rate recently predicted (Denkov et al., Phys. Rev. Lett., 103 (2009) 118302).
Local measurements of the constitutive law finally show that these foams behave
as simple Herschel-Bulkley yield stress fluids
On the existence of a simple yield stress fluid behavior
Materials such as foams, concentrated emulsions, dense suspensions or
colloidal gels, are yield stress fluids. Their steady flow behavior,
characterized by standard rheometric techniques, is usually modeled by a
Herschel-Bulkley law. The emergence of techniques that allow the measurement of
their local flow properties (velocity and volume fraction fields) has led to
observe new complex behaviors. It was shown that many of these materials
exhibit shear banding in a homogeneous shear stress field, which cannot be
accounted for by the standard steady-state constitutive laws of simple yield
stress fluids. In some cases, it was also observed that the velocity fields
under various conditions cannot be modeled with a single constitutive law and
that nonlocal models are needed to describe the flows. Doubt may then be cast
on any macroscopic characterization of such systems, and one may wonder if any
material behaves in some conditions as a Herschel-Bulkley material. In this
paper, we address the question of the existence of a simple yield stress fluid
behavior. We first review experimental results from the literature and we point
out the main factors (physical properties, experimental procedure) at the
origin of flow inhomogeneities and nonlocal effects. It leads us to propose a
well-defined procedure to ensure that steady-state bulk properties of the
materials are studied. We use this procedure to investigate yield stress fluid
flows with MRI techniques. We focus on nonthixotropic dense suspensions of soft
particles (foams, concentrated emulsions, Carbopol gels). We show that, as long
as they are studied in a wide (as compared to the size of the material
mesoscopic elements) gap geometry, these materials behave as 'simple yield
stress fluids': they are homogeneous, they do not exhibit steady-state shear
banding, and their steady flow behavior in simple shear can be modeled by a
local continuous monotonic constitutive equation which accounts for flows in
various conditions and matches the macroscopic response.Comment: Journal of Non-Newtonian Fluid Mechanics (2012)
http://dx.doi.org/10.1016/j.jnnfm.2012.06.00
Rhéologie multiéchelle des mousses liquides
Les mousses aqueuses sont des fluides complexes constitués de dispersions concentrées de bulles de gaz dans une solution de tensioactifs. A l'instar d'autres fluides complexes comme les émulsions ou les pâtes, une mousse se comporte comme un solide viscoélastique lorsque la fraction volumique de la phase continue est suffisamment faible pour que l'empilement des bulles soit bloqué. Ses propriétés mécaniques résultent de couplages entre processus se produisant à plusieurs échelles de temps et d'espace : celles des tensioactifs adsorbés aux interfaces liquide-gaz, celles d'une bulle de gaz ou de mouvements collectifs à une échelle mésoscopique. A partir de trois expériences, nous avons mis en évidence l'impact du désordre de leur structure d'une part, et celui des tensioactifs d'autre part, sur les propriétés viscoélastiques des mousses. Nous avons mis au point un rhéomètre oscillatoire qui permet de mesurer la relation contrainte-déformation-fréquence d'une monocouche de bulles confinées entre deux parois planes parallèles tout en contrôlant sa pression osmotique. Nous avons montré que les relaxations de ces mousses de structure modèle sont pilotées par la rhéologie interfaciale de cisaillement que nous avons caractérisée indépendamment. Nous proposons un modèle quantitatif de ce couplage. Dans une deuxième expérience, nous avons sondé la réponse viscoélastique des mousses de structure 3D désordonnées. Nos résultats montrent que selon la rigidité des interfaces, le facteur de perte d'une mousse est décrit par une loi d'échelle en fréquence. Son évolution avec la taille des bulles et la viscosité du liquide permet de déterminer le mécanisme à l'origine de la dissipation. Dans une troisième expérience, Nous avons élaboré des mousses monodisperses de structure 3D ordonnées et de pression osmotique contrôlée. De manière remarquable, la variation de leur facteur de perte en fonction de la fréquence est similaire à celle des mousses désordonnées de même composition chimique. Ces résultats démontrent que le désordre de l'empilement des bulles n'est pas à l'origine des relaxations viscoélastiques linéaires des mousses, comme l'avaient suggéré plusieurs modèles théoriques, et ouvrent la voie à une modélisation quantitative du lien entre la viscoélasticité des interfaces et celle des mousses 3DAqueous foams are constituted of concentrated gas bubble dispersions in a surfactant solution. Like other complex fluids, such as emulsions or pastes, foam behaves as a viscoelastic solid if the volume fraction of the continuous phase is sufficiently small for the bubble packing to be jammed. The mechanical properties of the foam are due to couplings between processes at a wide range of time and length scales: The ones of the surfactant molecules that are adsorbed to the gas-liquid interfaces, the ones of the bubbles or collective motions at a mesoscopic scale. On the basis of three experiments, we have evidenced the impact of structural disorder and surfactant properties on foam viscoelasticity. We have constructed an oscillatory rheometer to measure the frequency and strain dependent stress response of a bubble monolayer confined between two parallel plates, subjected to an imposed osmotic pressure. We have shown that the relaxation of these model foams are governed by the interfacial shear rheology which we have probed in independent experiments and, we present a quantitative model of this coupling. In a second experiment, we have probed the viscoelastic response of disordered 3D foams. Our results show that, depending on interfacial rigidity, the mechanical loss factor of a foam is described by a scaling law depending on frequency. Its dependence on bubble size and liquid viscosity helps to determine the origin of the dissipation. In our third experiment, we have produced monodispersed ordered foams, subjected to a controlled osmotic pressure. Remarkably, the frequency scaling of their loss factor is similar to the one of disordered foams of the same chemical composition. These results demonstrate that the linear viscoelastic response of foams is not the consequence of disorder on the bubble scale as suggested by several previous theories, and they thus open the way for quantitative models linking the viscoelasticity of the interfaces to that of 3D foamsPARIS-EST-Université (770839901) / SudocSudocFranceF
Glissement à la paroi d'une mousse humide
Les mousses aqueuses sont des assemblées compactes de bulles de gaz dans une solution de tensioactifs. Pour décrire les propriétés rhéologiques de ces fluides complexes utilisés dans de nombreuses applications, il est nécessaire de comprendre les mécanismes de dissipation aux petites échelles, au niveau des bulles ou des films liquides. En particulier, on observe que ces matériaux glissent le long de parois lisses. D'autre part, la rhéologie des mousses dépend fortement de leur fraction volumique de liquide ; nous nous intéressons donc ici au cas des mousses humides, proches de la transition de (dé)blocage, quand les contacts entre bulles disparaissent et que la pression de confinement de la mousse tend vers zéro. Pour élucider les mécanismes de friction en jeu dans les mousses humides, nous étudions le glissement de monocouches de bulles ou de mousses 3D le long d'un plan incliné immergé. Deux régimes de friction sont mis en évidence : en plus d'une friction non-linéaire de type Bretherton, déjà observée dans les mousses, nous montrons l'existence d'une friction linéaire en vitesse de type Stokes (Le Merrer et al. Soft Matter 2015). La transition entre ces deux régimes est pilotée par l'écrasement des bulles contre la paroi
A high rate flow-focusing foam generator
We use a rigid axisymetric microfluidic flow focusing device to produce
monodisperse bubbles, dispersed in a surfactant solution. The gas volume
fraction of the dispersion collected out of this device can be as large as 90%,
demonstrating that foam with solid-like viscoelastic properties can be produced
in this way. The polydispersity of the bubbles is so low that we observe
crystallization of our foam. We measure the diameter of the bubbles and compare
these data to recent theoretical predictions. The good control over bubble size
and foam gas volume fraction shows that our device is a flexible and promising
tool to produce calibrated foam at a high flow rate
Coarsening transitions of wet liquid foams under microgravity conditions
We report foam coarsening studies which were performed in the International
Space Station (ISS) to suppress drainage due to gravity. Foams and bubbly
liquids with controlled liquid fractions between 15 and 50\% were
investigated to study the transition between bubble growth laws previously
reported near the dry limit and the dilute limit (Ostwald ripening). We determined the coarsening rates; for the
driest foams and the bubbly liquids, they are in close agreement with
theoretical predictions. We observe a sharp cross-over between the respective
laws at a critical value . At liquid fractions beyond this transition,
neighboring bubbles are no longer all in contact, like at a jamming transition.
Remarkably is significantly larger than the random close packing
volume fraction of the bubbles which was determined
independently. We attribute the differences between and
to a weakly adhesive bubble interaction that we have
studied in complementary ground-based experiments
Aqueous foams in microgravity, measuring bubble sizes
The paper describes a study of wet foams in microgravity whose bubble size
distribution evolves due to diffusive gas exchange. We focus on the comparison
between the size of bubbles determined from images of the foam surface and the
size of bubbles in the bulk foam, determined from Diffuse Transmission
Spectroscopy (DTS). Extracting the bubble size distribution from images of a
foam surface is difficult so we have used three different procedures : manual
analysis, automatic analysis with a customized Python script and machine
learning analysis. Once various pitfalls were identified and taken into
account, all the three procedures yield identical results within error bars.
DTS only allows the determination of an average bubble radius which is
proportional to the photon transport mean free path . The relation
between the measured diffuse transmitted light intensity and {}
previously derived for slab-shaped samples of infinite lateral extent does not
apply to the cuboid geometry of the cells used in the microgravity experiment.
A new more general expression of the diffuse intensity transmitted with
specific optical boundary conditions has been derived and applied to determine
the average bubble radius. The temporal evolution of the average bubble radii
deduced from DTS and of the same average radii of the bubbles measured at the
sample surface are in very good agreement throughout the coarsening. Finally,
ground experiments were performed to compare bubble size distributions in a
bulk wet foam and at its surface at times so short that diffusive gas exchange
is insignificant. They were found to be similar, confirming that bubbles seen
at the surface are representative of the bulk foam bubbles