105,425 research outputs found

    Constrained Molecular Dynamics Simulations of Atomic Ground-States

    Full text link
    Constrained molecular dynamics(CoMD) model, previously introduced for nuclear dynamics, has been extended to the atomic structure and collision calculations. Quantum effects corresponding to the Pauli and Heisenberg principle are enforced by constraints, in a parameter-free way. Our calculations for small atomic system, H, He, Li, Be, F reproduce the ground-state binding energies within 3%, compared with the results of quantum mechanical Hartree-Fock calculations.Comment: 3 pages, 2 figure

    Magnetic field in Cepheus A as deduced from OH maser polarimetric observations

    Full text link
    We present the results of MERLIN polarization mapping of OH masers at 1665 and 1667 MHz towards the Cepheus A star-forming region. The maser emission is spread over a region of 6 arcsec by 10 arcsec, twice the extent previously detected. In contrast to the 22 GHz water masers, the OH masers associated with H II regions show neither clear velocity gradients nor regular structures. We identified ten Zeeman pairs which imply a magnetic field strength along the line-of-sight from -17.3 to +12.7 mG. The magnetic field is organised on the arcsecond scale, pointing towards us in the west and away from us in the east side. The linearly polarized components, detected for the first time, show regularities in the polarization position angles depending on their position. The electric vectors of OH masers observed towards the outer parts of H II regions are consistent with the interstellar magnetic field orientation, while those seen towards the centres of H II regions are parallel to the radio-jets. A Zeeman quartet inside a southern H II region has now been monitored for 25 years; we confirm that the magnetic field decays monotonically over that period.Comment: 10 pages, 6 figures,accepted for publication in MNRA

    The Masers Towards IRAS 20126+4104

    Full text link
    We present MERLIN observations of OH, water and methanol masers towards the young high mass stellar object IRAS 20126+4104. Emission from the 1665-MHz OH, 22-GHz H_2O and 6.7-GHz CH_3OH masers is detected and all originates very close to the central source. The OH and methanol masers appear to trace part of the circumstellar disk around the central source. The positions and velocities of the OH and methanol masers are consistent with Keplerian rotation around a central mass of ~ 5 Msun. The water masers are offset from the OH and methanol masers and have significantly changed since they were last observed, but still appear to be associated to the outflow from the source. All the OH masers components are circularly polarised, in some cases reaching 100 percent while some OH components also have linear polarisation. We identify one Zeeman pair of OH masers and the splitting of this pair indicates a magnetic field of strength ~ 11 mG within ~ 0.5" (850 AU) of the central source. The OH and methanol maser emission suggest that the disk material is dense, n > 10^6 cm^-3, and warm, T > 125 K and the high abundance of methanol required by the maser emission is consistent with the evaporation of the mantles on dust grains in the disk as a result of heating or shocking of the disk materialComment: 9 pages, 7 figures and 6 table

    Probing Fine-Scale Ionospheric Structure with the Very Large Array Radio Telescope

    Full text link
    High resolution (~1 arcminute) astronomical imaging at low frequency (below 150 MHz) has only recently become practical with the development of new calibration algorithms for removing ionospheric distortions. In addition to opening a new window in observational astronomy, the process of calibrating the ionospheric distortions also probes ionospheric structure in an unprecedented way. Here we explore one aspect of this new type of ionospheric measurement, the differential refraction of celestial source pairs as a function of their angular separation. This measurement probes variations in the spatial gradient of the line-of-sight total electron content (TEC) to 0.001 TECU/km accuracy over spatial scales of under 10 km to over 100 km. We use data from the VLA Low-frequency Sky Survey (VLSS; Cohen et al. 2007, AJ 134, 1245), a nearly complete 74 MHz survey of the entire sky visible to the Very Large Array (VLA) telescope in Socorro, New Mexico. These data comprise over 500 hours of observations, all calibrated in a standard way. While ionospheric spatial structure varies greatly from one observation to the next, when analyzed over hundreds of hours, statistical patterns become apparent. We present a detailed characterization of how the median differential refraction depends on source pair separation, elevation and time of day. We find that elevation effects are large, but geometrically predictable and can be "removed" analytically using a "thin-shell" model of the ionosphere. We find significantly greater ionospheric spatial variations during the day than at night. These diurnal variations appear to affect the larger angular scales to a greater degree indicating that they come from disturbances on relatively larger spatial scales (100s of km, rather than 10s of km).Comment: Accepted for publication by The Astronomical Journa

    Generating Preview Tables for Entity Graphs

    Full text link
    Users are tapping into massive, heterogeneous entity graphs for many applications. It is challenging to select entity graphs for a particular need, given abundant datasets from many sources and the oftentimes scarce information for them. We propose methods to produce preview tables for compact presentation of important entity types and relationships in entity graphs. The preview tables assist users in attaining a quick and rough preview of the data. They can be shown in a limited display space for a user to browse and explore, before she decides to spend time and resources to fetch and investigate the complete dataset. We formulate several optimization problems that look for previews with the highest scores according to intuitive goodness measures, under various constraints on preview size and distance between preview tables. The optimization problem under distance constraint is NP-hard. We design a dynamic-programming algorithm and an Apriori-style algorithm for finding optimal previews. Results from experiments, comparison with related work and user studies demonstrated the scoring measures' accuracy and the discovery algorithms' efficiency.Comment: This is the camera-ready version of a SIGMOD16 paper. There might be tiny differences in layout, spacing and linebreaking, compared with the version in the SIGMOD16 proceedings, since we must submit TeX files and use arXiv to compile the file

    An Update on the 0Z Project

    Get PDF
    We give an update on our 0Z Survey to find more extremely metal poor (EMP) stars with [Fe/H] < -3 dex through mining the database of the Hamburg/ESO Survey. We present the most extreme such stars we have found from ~1550 moderate resolution follow up spectra. One of these, HE1424-0241, has highly anomalous abundance ratios not seen in any previously known halo giant, with very deficient Si, moderately deficient Ca and Ti, highly enhanced Mn and Co, and low C, all with respect to Fe. We suggest a SNII where the nucleosynthetic yield for explosive alpha-burning nuclei was very low compared to that for the hydrostatic alpha-burning element Mg, which is normal in this star relative to Fe. A second, less extreme, outlier star with high [Sc/Fe] has also been found. We examine the extremely metal-poor tail of the HES metallicity distribution function (MDF). We suggest on the basis of comparison of our high resolution detailed abundance analyses with [Fe/H](HES) for stars in our sample that the MDF inferred from follow up spectra of the HES sample of candidate EMP stars is heavily contaminated for [Fe/H](HES) < -3 dex; many of the supposed EMP stars below that metallicity are of substantially higher Fe-metallicity, including most of the very C-rich stars, or are spurious objects.Comment: to appear in conference proceedings "First Stars III", ed. B. O'Shea, A. Heger & T.Abel, 4 pages, 2 figure

    Sub-au imaging of water vapour clouds around four Asymptotic Giant Branch stars

    Get PDF
    We present MERLIN maps of the 22-GHz H2O masers around four low-mass late-type stars (IK Tau U Ori, RT Vir and U Her), made with an angular resolution of ~ 15 milliarcsec and a velocity resolution of 0.1 km s-1. The H2O masers are found in thick expanding shells with inner radii ~ 6 to 16 au and outer radii four times larger. The expansion velocity increases radially through the H2O maser regions, with logarithmic velocity gradients of 0.5--0.9. IK Tau and RT Vir have well-filled H2O maser shells with a spatial offset between the near and far sides of the shell, which suggests that the masers are distributed in oblate spheroids inclined to the line of sight. U Ori and U Her have elongated poorly-filled shells with indications that the masers at the inner edge have been compressed by shocks; these stars also show OH maser flares. MERLIN resolves individual maser clouds, which have diameters of 2 -- 4 au and filling factors of only ~ 0.01 with respect to the whole H2O maser shells. The CSE velocity structure gives additional evidence the maser clouds are density bounded. Masing clouds can be identified over a similar timescale to their sound crossing time (~2 yr) but not longer. The sizes and observed lifetimes of these clouds are an order of magnitude smaller than those around red supergiants, similar to the ratio of low-mass:high-mass stellar masses and sizes. This suggests that cloud size is determined by stellar properties, not local physical phenomena in the wind.Comment: 21 pages, including 14 figures and 8 tables. Accepted for publication in MNRA

    On number fields with nontrivial subfields

    Full text link
    What is the probability for a number field of composite degree dd to have a nontrivial subfield? As the reader might expect the answer heavily depends on the interpretation of probability. We show that if the fields are enumerated by the smallest height of their generators the probability is zero, at least if d>6d>6. This is in contrast to what one expects when the fields are enumerated by the discriminant. The main result of this article is an estimate for the number of algebraic numbers of degree d=end=e n and bounded height which generate a field that contains an unspecified subfield of degree ee. If n>max{e2+e,10}n>\max\{e^2+e,10\} we get the correct asymptotics as the height tends to infinity

    A MERLIN Study of 6 GHz Excited-state OH & 6.7 GHz Methanol Masers in ON1

    Full text link
    MERLIN observations of 6.668-GHz methanol and both 6.031- and 6.035-GHz hydroxyl (OH) emission from the massive star-formation region ON1 are presented. These are the first methanol observations made in full polarization using 5 antennas of MERLIN, giving high resolution and sensitivity to extended emission. Maser features are found to lie at the southern edge of the ultra-compact HII region, following the known distribution of ground-state OH masers. The masers cover a region ~1 arcsec in extent, lying perpendicular to the H13CO+ bipolar outflow. Excited-state OH emission demonstrates consistent polarization angles across the strongest linearly polarized features which are parallel to the overall distribution. The linear polarizations vary between 10.0 and 18.5 per cent, with an average polarization angle of -60 deg +/- 28 deg. The strongest 6.668-GHz methanol features provide an upper limit to linear polarization of ~1 per cent. Zeeman splitting of OH shows magnetic fields between -1.1 to -5.8 mG, and a tentative methanol magnetic field strength of -18 mG is measured.Comment: 10 Pages, 5 Figure

    Attosecond time-scale multi-electron collisions in the Coulomb four-body problem: traces in classical probability densities

    Get PDF
    In the triple ionization of the Li ground state by single photon absorption the three electrons escape to the continuum mainly through two collision sequences with individual collisions separated by time intervals on the attosecond scale. We investigate the traces of these two collision sequences in the classical probability densities. We show that each collision sequence has characteristic phase space properties which distinguish it from the other. Classical probability densities are the closest analog to quantum mechanical densities allowing our results to be directly compared to quantum mechanical results.Comment: 9 pages, 10 figure
    corecore