393 research outputs found
Suicide in Eastern Europe, the Commonwealth of Independent States, and the Baltic Countries: Social and Public Health Determinants
While suicide is a major public health problem worldwide, the countries of the former Soviet Union, including the Baltic States and the Commonwealth of Independent States (CIS), have some of the highest rates in the world. High suicide rates across Eastern Europe have been correlated with the post-Soviet transitional period and the societal changes associated with that transition. Many scholars have speculated that the sudden collapse of the paternalistic Soviet system and the introduction of a market economy - and the psychosocial distress that ensued.contributed to the suicide mortality crisis that most of the former Soviet republics experienced in the 1990s. It is unclear whether the transitional period has ended or is still ongoing. While suicide mortality rates in many countries have declined since then, they remain alarmingly high. In some countries, such as Belarus, the rates have increased.
From September 14 to 15, 2010, suicidologists and other scholars and professionals with expertise in suicide and suicide prevention gathered in Tallinn, Estonia, to discuss the evidence base for social and public health determinants of suicide in the Baltic States, the CIS, and Eastern Europe. The participants identified research and data gaps that, if filled, would strengthen the foundation for developing effective suicide prevention policies and programs. This report summarizes the presentations and discussions that took place during the conference
The controlled teleportation of an arbitrary two-atom entangled state in driven cavity QED
In this paper, we propose a scheme for the controlled teleportation of an
arbitrary two-atom entangled state
in driven cavity QED.
An arbitrary two-atom entangled state can be teleported perfectly with the help
of the cooperation of the third side by constructing a three-atom GHZ entangled
state as the controlled channel. This scheme does not involve apparent (or
direct) Bell-state measurement and is insensitive to the cavity decay and the
thermal field. The probability of the success in our scheme is 1.0.Comment: 10 page
Control of Dynamical Localization
Control over the quantum dynamics of chaotic kicked rotor systems is
demonstrated. Specifically, control over a number of quantum coherent phenomena
is achieved by a simple modification of the kicking field. These include the
enhancement of the dynamical localization length, the introduction of classical
anomalous diffusion assisted control for systems far from the semiclassical
regime, and the observation of a variety of strongly nonexponential lineshapes
for dynamical localization. The results provide excellent examples of
controlled quantum dynamics in a system that is classically chaotic and offer
new opportunities to explore quantum fluctuations and correlations in quantum
chaos.Comment: 9 pages, 7 figures, to appear in Physical Review
Chaos assisted tunnelling with cold atoms
In the context of quantum chaos, both theory and numerical analysis predict
large fluctuations of the tunnelling transition probabilities when irregular
dynamics is present at the classical level. We consider here the
non-dissipative quantum evolution of cold atoms trapped in a time-dependent
modulated periodic potential generated by two laser beams. We give some precise
guidelines for the observation of chaos assisted tunnelling between invariant
phase space structures paired by time-reversal symmetry.Comment: submitted to Phys. Rev. E ; 16 pages, 13 figures; figures of better
quality can be found at http://www.phys.univ-tours.fr/~mouchet
A Biased Review of Sociophysics
Various aspects of recent sociophysics research are shortly reviewed:
Schelling model as an example for lack of interdisciplinary cooperation,
opinion dynamics, combat, and citation statistics as an example for strong
interdisciplinarity.Comment: 16 pages for J. Stat. Phys. including 2 figures and numerous
reference
Quantum walks: a comprehensive review
Quantum walks, the quantum mechanical counterpart of classical random walks,
is an advanced tool for building quantum algorithms that has been recently
shown to constitute a universal model of quantum computation. Quantum walks is
now a solid field of research of quantum computation full of exciting open
problems for physicists, computer scientists, mathematicians and engineers.
In this paper we review theoretical advances on the foundations of both
discrete- and continuous-time quantum walks, together with the role that
randomness plays in quantum walks, the connections between the mathematical
models of coined discrete quantum walks and continuous quantum walks, the
quantumness of quantum walks, a summary of papers published on discrete quantum
walks and entanglement as well as a succinct review of experimental proposals
and realizations of discrete-time quantum walks. Furthermore, we have reviewed
several algorithms based on both discrete- and continuous-time quantum walks as
well as a most important result: the computational universality of both
continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing
Journa
Structure–activity Relationships of Amyloid Beta-aggregation Inhibitors Based on Curcumin: Influence of Linker Length and Flexibility
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66293/1/j.1747-0285.2007.00557.x.pd
Antimatter Regions in the Early Universe and Big Bang Nucleosynthesis
We have studied big bang nucleosynthesis in the presence of regions of
antimatter. Depending on the distance scale of the antimatter region, and thus
the epoch of their annihilation, the amount of antimatter in the early universe
is constrained by the observed abundances. Small regions, which annihilate
after weak freezeout but before nucleosynthesis, lead to a reduction in the 4He
yield, because of neutron annihilation. Large regions, which annihilate after
nucleosynthesis, lead to an increased 3He yield. Deuterium production is also
affected but not as much. The three most important production mechanisms of 3He
are 1) photodisintegration of 4He by the annihilation radiation, 2) pbar-4He
annihilation, and 3) nbar-4He annihilation by "secondary" antineutrons produced
in anti-4He annihilation. Although pbar-4He annihilation produces more 3He than
the secondary nbar-4He annihilation, the products of the latter survive later
annihilation much better, since they are distributed further away from the
annihilation zone.Comment: 15 pages, 9 figures. Minor changes to match the PRD versio
- …