150,219 research outputs found
Some remarks on stability for a phase-field model with memory
The phase field system with memory can be viewed as a phenomenological extension of the classical phase equations in which memory effects have been taken into account in both fields. Such memory effects could be important for example during phase transition in polymer melts in the proximity of the glass transition temperature where configurational degrees of freedom in the polymer melt constitute slowly relaxing "internal modes" which are di±cult to model explicitly. They should be relevant in particular to glass-liquid-glass transitions where re-entrance effects have been recently reported [27]. We note that in numerical studies based on sharp interface equations obtained from (PFM), grains have been seen to rotate as they shrink [35, 36]. While further modelling and numerical efforts are now being undertaken, the present manuscript is devoted to strengthening the analytical underpinnings of the model
Non-equilibrium steady state of sparse systems
A resistor-network picture of transitions is appropriate for the study of
energy absorption by weakly chaotic or weakly interacting driven systems. Such
"sparse" systems reach a novel non-equilibrium steady state (NESS) once coupled
to a bath. In the stochastic case there is an analogy to the physics of
percolating glassy systems, and an extension of the fluctuation-dissipation
phenomenology is proposed. In the mesoscopic case the quantum NESS might differ
enormously from the stochastic NESS, with saturation temperature determined by
the sparsity. A toy model where the sparsity of the system is modeled using a
log-normal random ensemble is analyzed.Comment: 6 pages, 6 figures, EPL accepted versio
Charge Transfer in Partition Theory
The recently proposed Partition Theory (PT) [J.Phys.Chem.A 111, 2229 (2007)]
is illustrated on a simple one-dimensional model of a heteronuclear diatomic
molecule. It is shown that a sharp definition for the charge of molecular
fragments emerges from PT, and that the ensuing population analysis can be used
to study how charge redistributes during dissociation and the implications of
that redistribution for the dipole moment. Interpreting small differences
between the isolated parts' ionization potentials as due to environmental
inhomogeneities, we gain insight into how electron localization takes place in
H2+ as the molecule dissociates. Furthermore, by studying the preservation of
the shapes of the parts as different parameters of the model are varied, we
address the issue of transferability of the parts. We find good transferability
within the chemically meaningful parameter regime, raising hopes that PT will
prove useful in chemical applications.Comment: 12 pages, 16 figure
Electroweak baryogenesis from chargino transport in the supersymmetric model
We study the baryon asymmetry of the universe in the supersymmetric standard
model (SSM). At the electroweak phase transition, the fermionic partners of the
charged SU(2) gauge bosons and Higgs bosons are reflected from or transmitted
to the bubble wallof the broken phase. Owing to a physical complex phase in
their mass matrix, these reflections and transmissions have asymmetries between
CP conjugate processes. Equilibrium conditions in the symmetric phaseare then
shifted to favor a non-vanishing value for the baryon number density, which is
realized through electroweak anomaly. We show that the resultant ratio of
baryon number to entropy is consistent with its present observed value within
reasonable ranges of SSM parameters, provided that the CP-violating phase
intrinsic in the SSM is not much suppressed. The compatibility with the
constraints on the parameters from the electric dipole moment of the neutron is
also discussed.Comment: 23 page
Equivalence of two mathematical forms for the bound angular momentum of the electromagnetic field
It is shown that the mathematical form, obtained in a recent paper, for the
angular momentum of the electromagnetic field in the vicinity of electric
charge is equivalent to another form obtained previously by Cohen-Tannoudji,
Dupont-Roc and Gilbert. In this version of the paper an improved derivation is
given.Comment: 4 pages pdf, simpler derivatio
A New Source for Electroweak Baryogenesis in the MSSM
One of the most experimentally testable explanations for the origin of the
baryon asymmetry of the universe is that it was created during the electroweak
phase transition, in the minimal supersymmetric standard model. Previous
efforts have focused on the current for the difference of the two Higgsino
fields, , as the source of biasing sphalerons to create the baryon
asymmetry. We point out that the current for the orthogonal linear combination,
, is larger by several orders of magnitude. Although this increases
the efficiency of electroweak baryogenesis, we nevertheless find that large
CP-violating angles are required to get a large enough baryon
asymmetry.Comment: 4 pages, 2 figures; numerical error corrected, which implies that
large CP violation is needed to get observed baryon asymmetry. We improved
solution of diffusion equations, and computed more accurate values for
diffusion coefficient and damping rate
A simple toy model for effective restoration of chiral symmetry in excited hadrons
A simple solvable toy model exhibiting effective restoration of chiral
symmetry in excited hadrons is constructed. A salient feature is that while
physics of the low-lying states is crucially determined by the spontaneous
breaking of chiral symmetry, in the high-lying states the effects of chiral
symmetry breaking represent only a small correction. Asymptotically the states
approach the regime where their properties are determined by the underlying
unbroken chiral symmetry.Comment: This is the published version of this paper. Note that the title has
changed from earlier versions as has the abstract. The emphasis is slightly
different from previous versions but the essential physical content is the
sam
- …
