150,219 research outputs found

    Some remarks on stability for a phase-field model with memory

    Get PDF
    The phase field system with memory can be viewed as a phenomenological extension of the classical phase equations in which memory effects have been taken into account in both fields. Such memory effects could be important for example during phase transition in polymer melts in the proximity of the glass transition temperature where configurational degrees of freedom in the polymer melt constitute slowly relaxing "internal modes" which are di±cult to model explicitly. They should be relevant in particular to glass-liquid-glass transitions where re-entrance effects have been recently reported [27]. We note that in numerical studies based on sharp interface equations obtained from (PFM), grains have been seen to rotate as they shrink [35, 36]. While further modelling and numerical efforts are now being undertaken, the present manuscript is devoted to strengthening the analytical underpinnings of the model

    Non-equilibrium steady state of sparse systems

    Full text link
    A resistor-network picture of transitions is appropriate for the study of energy absorption by weakly chaotic or weakly interacting driven systems. Such "sparse" systems reach a novel non-equilibrium steady state (NESS) once coupled to a bath. In the stochastic case there is an analogy to the physics of percolating glassy systems, and an extension of the fluctuation-dissipation phenomenology is proposed. In the mesoscopic case the quantum NESS might differ enormously from the stochastic NESS, with saturation temperature determined by the sparsity. A toy model where the sparsity of the system is modeled using a log-normal random ensemble is analyzed.Comment: 6 pages, 6 figures, EPL accepted versio

    Charge Transfer in Partition Theory

    Full text link
    The recently proposed Partition Theory (PT) [J.Phys.Chem.A 111, 2229 (2007)] is illustrated on a simple one-dimensional model of a heteronuclear diatomic molecule. It is shown that a sharp definition for the charge of molecular fragments emerges from PT, and that the ensuing population analysis can be used to study how charge redistributes during dissociation and the implications of that redistribution for the dipole moment. Interpreting small differences between the isolated parts' ionization potentials as due to environmental inhomogeneities, we gain insight into how electron localization takes place in H2+ as the molecule dissociates. Furthermore, by studying the preservation of the shapes of the parts as different parameters of the model are varied, we address the issue of transferability of the parts. We find good transferability within the chemically meaningful parameter regime, raising hopes that PT will prove useful in chemical applications.Comment: 12 pages, 16 figure

    Electroweak baryogenesis from chargino transport in the supersymmetric model

    Full text link
    We study the baryon asymmetry of the universe in the supersymmetric standard model (SSM). At the electroweak phase transition, the fermionic partners of the charged SU(2) gauge bosons and Higgs bosons are reflected from or transmitted to the bubble wallof the broken phase. Owing to a physical complex phase in their mass matrix, these reflections and transmissions have asymmetries between CP conjugate processes. Equilibrium conditions in the symmetric phaseare then shifted to favor a non-vanishing value for the baryon number density, which is realized through electroweak anomaly. We show that the resultant ratio of baryon number to entropy is consistent with its present observed value within reasonable ranges of SSM parameters, provided that the CP-violating phase intrinsic in the SSM is not much suppressed. The compatibility with the constraints on the parameters from the electric dipole moment of the neutron is also discussed.Comment: 23 page

    Equivalence of two mathematical forms for the bound angular momentum of the electromagnetic field

    Full text link
    It is shown that the mathematical form, obtained in a recent paper, for the angular momentum of the electromagnetic field in the vicinity of electric charge is equivalent to another form obtained previously by Cohen-Tannoudji, Dupont-Roc and Gilbert. In this version of the paper an improved derivation is given.Comment: 4 pages pdf, simpler derivatio

    A New Source for Electroweak Baryogenesis in the MSSM

    Get PDF
    One of the most experimentally testable explanations for the origin of the baryon asymmetry of the universe is that it was created during the electroweak phase transition, in the minimal supersymmetric standard model. Previous efforts have focused on the current for the difference of the two Higgsino fields, H1H2H_1-H_2, as the source of biasing sphalerons to create the baryon asymmetry. We point out that the current for the orthogonal linear combination, H1+H2H_1+H_2, is larger by several orders of magnitude. Although this increases the efficiency of electroweak baryogenesis, we nevertheless find that large CP-violating angles 0.15\ge 0.15 are required to get a large enough baryon asymmetry.Comment: 4 pages, 2 figures; numerical error corrected, which implies that large CP violation is needed to get observed baryon asymmetry. We improved solution of diffusion equations, and computed more accurate values for diffusion coefficient and damping rate

    A simple toy model for effective restoration of chiral symmetry in excited hadrons

    Full text link
    A simple solvable toy model exhibiting effective restoration of chiral symmetry in excited hadrons is constructed. A salient feature is that while physics of the low-lying states is crucially determined by the spontaneous breaking of chiral symmetry, in the high-lying states the effects of chiral symmetry breaking represent only a small correction. Asymptotically the states approach the regime where their properties are determined by the underlying unbroken chiral symmetry.Comment: This is the published version of this paper. Note that the title has changed from earlier versions as has the abstract. The emphasis is slightly different from previous versions but the essential physical content is the sam
    corecore