106,982 research outputs found
Optimization of Network Robustness to Waves of Targeted and Random Attack
We study the robustness of complex networks to multiple waves of simultaneous
(i) targeted attacks in which the highest degree nodes are removed and (ii)
random attacks (or failures) in which fractions and respectively of
the nodes are removed until the network collapses. We find that the network
design which optimizes network robustness has a bimodal degree distribution,
with a fraction of the nodes having degree k_2= (\kav - 1 +r)/r and the
remainder of the nodes having degree , where \kav is the average
degree of all the nodes. We find that the optimal value of is of the order
of for
Positive Solutions of Nonlinear Elliptic Eigenvalue Problems
We shall study a class of mildly nonlinear elliptic eigenvalue problems which are suggested by several recently occurring problems concerning the steady state temperature distribution of a physical medium in which heat is being generated nonlinearly
First-principles thermal equation of state and thermoelasticity of hcp Fe at high pressures
We investigate the equation of state and elastic properties of hcp iron at
high pressures and high temperatures using first principles linear response
linear-muffin-tin-orbital method in the generalized-gradient approximation. We
calculate the Helmholtz free energy as a function of volume, temperature, and
volume-conserving strains, including the electronic excitation contributions
from band structures and lattice vibrational contributions from quasi-harmonic
lattice dynamics. We perform detailed investigations on the behavior of elastic
moduli and equation of state properties as functions of temperature and
pressure, including the pressure-volume equation of state, bulk modulus, the
thermal expansion coefficient, the Gruneisen ratio, and the shock Hugoniot.
Detailed comparison has been made with available experimental measurements and
theoretical predictions.Comment: 33 pages, 12 figure
Determining crustal strain rates with a spaceborne geodynamics ranging system. 2: Station coordinate analysis
The use of a spaceborne geodynamics ranging system for determining crustal strain rates is analyzed. The use of site coordinates rather than intersite baseline distances for the strain rate determinations is emphasized. After discussing the analytical techniques which are to be employed, numerical results are presented which suggest that the use of site coordinates would result in a 20-70% improvement in the precision of the deduced values of straining. Precision of a few parts in 10 to the 9th power would be achievable with simple geometrics and a decade or two of measurements; precisions of a few parts in 10 to the 8th power would be achievable in a few years. A consideration of possible correlations among the derived target site coordinates leads to the conclusion that, with the proper choice of coordinate systems, the correlations can be made small and non-detrimental to the strain rate determinations
Intraplate deformation due to continental collisions: A numerical study of deformation in a thin viscous sheet
A model of crustal deformation from continental collision that involves the penetration of a rigid punch into a deformable sheet is investigated. A linear viscous flow law is used to compute the magnitude and rate of change of crustal thickness, the velocity of mass points, strain rates and their principal axes, modes of deformation, areal changes, and stress. In general, a free lateral boundary reduces the magnitude of changes in crustal thickening by allowing material to more readily escape the advancing punch. The shearing that occurs diagonally in front of the punch terminates in compression or extension depending on whether the lateral boundary is fixed or free. When the ratio of the diameter of the punch to that of the sheet exceeds one-third, the deformation is insenstive to the choice of lateral boundary conditions. When the punch is rigid with sharply defined edges, deformation is concentrated near the punch corners. With non-rigid punches, shearing results in deformation being concentrated near the center of the punch. Variations with respect to linearity and nonlinearity of flow are discussed
An Improved Procedure for Laboratory Rearing of the Corn Earworm, \u3ci\u3eHeliothis Zea\u3c/i\u3e (Lepidoptera: Noctuidae)
An improved method for the laboratory rearing of the corn earworm. Heliothis zea, described. The rearing medium is a modification of the commonly used wheat germ An oviposition chamber, a feeder for adults, and a simple and inexpensive contrnlled humidity chamber are described
- …