63,014 research outputs found

    Optical Dielectric Functions of III-V Semiconductors in Wurtzite Phase

    Full text link
    Optical properties of semiconductors can exhibit strong polarization dependence due to crystalline anisotropy. A number of recent experiments have shown that the photoluminescence intensity in free standing nanowires is polarization dependent. One contribution to this effect is the anisotropy of the dielectric function due to the fact that most nanowires crystalize in the wurtzite form. While little is known experimentally about the band structures wurtzite phase III-V semiconductors, we have previously predicted the bulk band structure of nine III-V semiconductors in wurtzite phase.Here, we predict the frequency dependent dielectric functions for nine non-Nitride wurtzite phase III-V semiconductors (AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb). Their complex dielectric functions are calculated in the dipole approximation by evaluating the momentum matrix elements on a dense grid of special k-points using empirical pseudopotential wave functions. Corrections to the momentum matrix elements accounting for the missing core states are made using a scaling factor which is determined by using the optical sum rules on the calculated dielectric functions for the zincblende polytypes. The dielectric function is calculated for polarizations perpendicular and parallel to the c-axis of the crystal

    New Relations for Excited Baryons in Large N_c QCD

    Full text link
    We show that excited baryons in large N_c QCD form multiplets, within which masses are first split at O(1/N_c). The dominant couplings of resonances to various mesons are highly constrained: The N(1535) decays at leading 1/N_c order exclusively to eta-N rather than pi-N, and vice versa for the N(1650). This multiplet structure is reproduced by a simple large N_c quark model, well studied in the literature, that describes resonances as single-quark excitations.Comment: 4 pages, no figures, ReVTeX 4. Includes new discussion of previous work on excited baryon tower

    Predicted band structures of III-V semiconductors in wurtzite phase

    Full text link
    While non-nitride III-V semiconductors typically have a zincblende structure, they may also form wurtzite crystals under pressure or when grown as nanowhiskers. This makes electronic structure calculation difficult since the band structures of wurtzite III-V semiconductors are poorly characterized. We have calculated the electronic band structure for nine III-V semiconductors in the wurtzite phase using transferable empirical pseudopotentials including spin-orbit coupling. We find that all the materials have direct gaps. Our results differ significantly from earlier {\it ab initio} calculations, and where experimental results are available (InP, InAs and GaAs) our calculated band gaps are in good agreement. We tabulate energies, effective masses, and linear and cubic Dresselhaus zero-field spin-splitting coefficients for the zone-center states. The large zero-field spin-splitting coefficients we find may lead to new functionalities for designing devices that manipulate spin degrees of freedom

    Holocene-Neogene volcanism in northeastern Australia: chronology and eruption history

    Get PDF
    Quaternary and late Neogene volcanism is widespread in northeastern Australia, producing at least 397 eruptions covering more than 20,000 km2, including at least 20 flows over 50 km long. Despite this abundance of young volcanism, before this study numerous eruptions had tentative ages or were undated, and the area requires a comprehensive evaluation of eruption patterns through time. To help address these issues we applied multi-collector ARGUS-V 40Ar/39Ar geochronology to determine the age of four of the younger extensive flows: Undara (160 km long, 189 ± 4/4 ka; 2σ, with full analytical/external uncertainties), Murronga (40 km long, 153 ± 5/5 ka), Toomba (120 km long, 21 ± 3/3 ka), and Kinrara (55 km long, 7 ± 2/2 ka). Verbal traditions of the Gugu Badhun Aboriginal people contain features that may potentially describe the eruption of Kinrara. If the traditions do record this eruption, they would have been passed down for 230 ± 70 generations – a period of time exceeding the earliest written historical records. To further examine north Queensland volcanism through time we compiled a database of 337 ages, including 179 previously unpublished K-Ar and radiocarbon results. The compiled ages demonstrate that volcanic activity has occurred without major time breaks since at least 9 Ma. The greatest frequency of eruptions occurred in the last 2 Ma, with an average recurrence interval of <10–22 ka between eruptions. Activity was at times likely more frequent than these calculations indicate, as the geochronologic dataset is incomplete, with undated eruptions, and intraplate volcanism is often episodic. The duration, frequency, and youthfulness of activity indicate that north Queensland volcanism should be considered as potentially still active, and there are now two confirmed areas of Holocene volcanism in eastern Australia – one at each end of the continent. More broadly, our data provides another example of 40Ar/39Ar geochronology applied to Holocene and latest Pleistocene mafic eruptions, further demonstrating that this method has the ability to examine eruptions and hazards at the youngest volcanoes on Earth

    Note on the Kaplan-Yorke dimension and linear transport coefficients

    Full text link
    A number of relations between the Kaplan-Yorke dimension, phase space contraction, transport coefficients and the maximal Lyapunov exponents are given for dissipative thermostatted systems, subject to a small external field in a nonequilibrium stationary state. A condition for the extensivity of phase space dimension reduction is given. A new expression for the transport coefficients in terms of the Kaplan-Yorke dimension is derived. Alternatively, the Kaplan-Yorke dimension for a dissipative macroscopic system can be expressed in terms of the transport coefficients of the system. The agreement with computer simulations for an atomic fluid at small shear rates is very good.Comment: 12 pages, 5 figures, submitted to J. Stat. Phy

    Giant electrocaloric effect around Tc_c

    Full text link
    We use molecular dynamics with a first-principles-based shell model potential to study the electrocaloric effect (ECE) in lithium niobate, LiNbO3_3, and find a giant electrocaloric effect along a line passing through the ferroelectric transition. With applied electric field, a line of maximum ECE passes through the zero field ferroelectric transition, continuing along a Widom line at high temperatures with increasing field, and along the instability that leads to homogeneous ferroelectric switching below TcT_c with an applied field antiparallel to the spontaneous polarization. This line is defined as the minimum in the inverse capacitance under applied electric field. We investigate the effects of pressure, temperature and applied electric field on the ECE. The behavior we observe in LiNbO3_3 should generally apply to ferroelectrics; we therefore suggest that the operating temperature for refrigeration and energy scavenging applications should be above the ferroelectric transition region to obtain large electrocaloric response. We find a relationship among TcT_c, the Widom line and homogeneous switching that should be universal among ferroelectrics, relaxors, multiferroics, and the same behavior should be found under applied magnetic fields in ferromagnets.Comment: 5 page

    Stability of attitude control systems acted upon by random perturbations

    Get PDF
    Mathematical models on stability of attitude control systems acted upon by random perturbation processe

    New Results for Diffusion in Lorentz Lattice Gas Cellular Automata

    Full text link
    New calculations to over ten million time steps have revealed a more complex diffusive behavior than previously reported, of a point particle on a square and triangular lattice randomly occupied by mirror or rotator scatterers. For the square lattice fully occupied by mirrors where extended closed particle orbits occur, anomalous diffusion was still found. However, for a not fully occupied lattice the super diffusion, first noticed by Owczarek and Prellberg for a particular concentration, obtains for all concentrations. For the square lattice occupied by rotators and the triangular lattice occupied by mirrors or rotators, an absence of diffusion (trapping) was found for all concentrations, except on critical lines, where anomalous diffusion (extended closed orbits) occurs and hyperscaling holds for all closed orbits with {\em universal} exponents df=74{\displaystyle{d_f = \frac{7}{4}}} and Ï„=157{\displaystyle{\tau = \frac{15}{7}}}. Only one point on these critical lines can be related to a corresponding percolation problem. The questions arise therefore whether the other critical points can be mapped onto a new percolation-like problem, and of the dynamical significance of hyperscaling.Comment: 52 pages, including 18 figures on the last 22 pages, email: [email protected]
    • …
    corecore