463 research outputs found

    Learning Character-Agnostic Motion for Motion Retargeting in 2D

    Full text link
    Analyzing human motion is a challenging task with a wide variety of applications in computer vision and in graphics. One such application, of particular importance in computer animation, is the retargeting of motion from one performer to another. While humans move in three dimensions, the vast majority of human motions are captured using video, requiring 2D-to-3D pose and camera recovery, before existing retargeting approaches may be applied. In this paper, we present a new method for retargeting video-captured motion between different human performers, without the need to explicitly reconstruct 3D poses and/or camera parameters. In order to achieve our goal, we learn to extract, directly from a video, a high-level latent motion representation, which is invariant to the skeleton geometry and the camera view. Our key idea is to train a deep neural network to decompose temporal sequences of 2D poses into three components: motion, skeleton, and camera view-angle. Having extracted such a representation, we are able to re-combine motion with novel skeletons and camera views, and decode a retargeted temporal sequence, which we compare to a ground truth from a synthetic dataset. We demonstrate that our framework can be used to robustly extract human motion from videos, bypassing 3D reconstruction, and outperforming existing retargeting methods, when applied to videos in-the-wild. It also enables additional applications, such as performance cloning, video-driven cartoons, and motion retrieval.Comment: SIGGRAPH 2019. arXiv admin note: text overlap with arXiv:1804.05653 by other author

    Neuron-level Selective Context Aggregation for Scene Segmentation

    Full text link
    Contextual information provides important cues for disambiguating visually similar pixels in scene segmentation. In this paper, we introduce a neuron-level Selective Context Aggregation (SCA) module for scene segmentation, comprised of a contextual dependency predictor and a context aggregation operator. The dependency predictor is implicitly trained to infer contextual dependencies between different image regions. The context aggregation operator augments local representations with global context, which is aggregated selectively at each neuron according to its on-the-fly predicted dependencies. The proposed mechanism enables data-driven inference of contextual dependencies, and facilitates context-aware feature learning. The proposed method improves strong baselines built upon VGG16 on challenging scene segmentation datasets, which demonstrates its effectiveness in modeling context information

    SAGNet:Structure-aware Generative Network for 3D-Shape Modeling

    Full text link
    We present SAGNet, a structure-aware generative model for 3D shapes. Given a set of segmented objects of a certain class, the geometry of their parts and the pairwise relationships between them (the structure) are jointly learned and embedded in a latent space by an autoencoder. The encoder intertwines the geometry and structure features into a single latent code, while the decoder disentangles the features and reconstructs the geometry and structure of the 3D model. Our autoencoder consists of two branches, one for the structure and one for the geometry. The key idea is that during the analysis, the two branches exchange information between them, thereby learning the dependencies between structure and geometry and encoding two augmented features, which are then fused into a single latent code. This explicit intertwining of information enables separately controlling the geometry and the structure of the generated models. We evaluate the performance of our method and conduct an ablation study. We explicitly show that encoding of shapes accounts for both similarities in structure and geometry. A variety of quality results generated by SAGNet are presented. The data and code are at https://github.com/zhijieW-94/SAGNet.Comment: Accepted by SIGGRAPH 201

    DiDA: Disentangled Synthesis for Domain Adaptation

    Full text link
    Unsupervised domain adaptation aims at learning a shared model for two related, but not identical, domains by leveraging supervision from a source domain to an unsupervised target domain. A number of effective domain adaptation approaches rely on the ability to extract discriminative, yet domain-invariant, latent factors which are common to both domains. Extracting latent commonality is also useful for disentanglement analysis, enabling separation between the common and the domain-specific features of both domains. In this paper, we present a method for boosting domain adaptation performance by leveraging disentanglement analysis. The key idea is that by learning to separately extract both the common and the domain-specific features, one can synthesize more target domain data with supervision, thereby boosting the domain adaptation performance. Better common feature extraction, in turn, helps further improve the disentanglement analysis and disentangled synthesis. We show that iterating between domain adaptation and disentanglement analysis can consistently improve each other on several unsupervised domain adaptation tasks, for various domain adaptation backbone models

    Printed Perforated Lampshades for Continuous Projective Images

    Full text link
    We present a technique for designing 3D-printed perforated lampshades, which project continuous grayscale images onto the surrounding walls. Given the geometry of the lampshade and a target grayscale image, our method computes a distribution of tiny holes over the shell, such that the combined footprints of the light emanating through the holes form the target image on a nearby diffuse surface. Our objective is to approximate the continuous tones and the spatial detail of the target image, to the extent possible within the constraints of the fabrication process. To ensure structural integrity, there are lower bounds on the thickness of the shell, the radii of the holes, and the minimal distances between adjacent holes. Thus, the holes are realized as thin tubes distributed over the lampshade surface. The amount of light passing through a single tube may be controlled by the tube's radius and by its direction (tilt angle). The core of our technique thus consists of determining a suitable configuration of the tubes: their distribution across the relevant portion of the lampshade, as well as the parameters (radius, tilt angle) of each tube. This is achieved by computing a capacity-constrained Voronoi tessellation over a suitably defined density function, and embedding a tube inside the maximal inscribed circle of each tessellation cell. The density function for a particular target image is derived from a series of simulated images, each corresponding to a different uniform density tube pattern on the lampshade.Comment: 10 page

    Unsupervised multi-modal Styled Content Generation

    Full text link
    The emergence of deep generative models has recently enabled the automatic generation of massive amounts of graphical content, both in 2D and in 3D. Generative Adversarial Networks (GANs) and style control mechanisms, such as Adaptive Instance Normalization (AdaIN), have proved particularly effective in this context, culminating in the state-of-the-art StyleGAN architecture. While such models are able to learn diverse distributions, provided a sufficiently large training set, they are not well-suited for scenarios where the distribution of the training data exhibits a multi-modal behavior. In such cases, reshaping a uniform or normal distribution over the latent space into a complex multi-modal distribution in the data domain is challenging, and the generator might fail to sample the target distribution well. Furthermore, existing unsupervised generative models are not able to control the mode of the generated samples independently of the other visual attributes, despite the fact that they are typically disentangled in the training data. In this paper, we introduce UMMGAN, a novel architecture designed to better model multi-modal distributions, in an unsupervised fashion. Building upon the StyleGAN architecture, our network learns multiple modes, in a completely unsupervised manner, and combines them using a set of learned weights. We demonstrate that this approach is capable of effectively approximating a complex distribution as a superposition of multiple simple ones. We further show that UMMGAN effectively disentangles between modes and style, thereby providing an independent degree of control over the generated content

    CrossNet: Latent Cross-Consistency for Unpaired Image Translation

    Full text link
    Recent GAN-based architectures have been able to deliver impressive performance on the general task of image-to-image translation. In particular, it was shown that a wide variety of image translation operators may be learned from two image sets, containing images from two different domains, without establishing an explicit pairing between the images. This was made possible by introducing clever regularizers to overcome the under-constrained nature of the unpaired translation problem. In this work, we introduce a novel architecture for unpaired image translation, and explore several new regularizers enabled by it. Specifically, our architecture comprises a pair of GANs, as well as a pair of translators between their respective latent spaces. These cross-translators enable us to impose several regularizing constraints on the learnt image translation operator, collectively referred to as latent cross-consistency. Our results show that our proposed architecture and latent cross-consistency constraints are able to outperform the existing state-of-the-art on a variety of image translation tasks

    Shape-Pose Disentanglement using SE(3)-equivariant Vector Neurons

    Full text link
    We introduce an unsupervised technique for encoding point clouds into a canonical shape representation, by disentangling shape and pose. Our encoder is stable and consistent, meaning that the shape encoding is purely pose-invariant, while the extracted rotation and translation are able to semantically align different input shapes of the same class to a common canonical pose. Specifically, we design an auto-encoder based on Vector Neuron Networks, a rotation-equivariant neural network, whose layers we extend to provide translation-equivariance in addition to rotation-equivariance only. The resulting encoder produces pose-invariant shape encoding by construction, enabling our approach to focus on learning a consistent canonical pose for a class of objects. Quantitative and qualitative experiments validate the superior stability and consistency of our approach

    Cross-Domain Cascaded Deep Feature Translation

    Full text link
    In recent years we have witnessed tremendous progress in unpaired image-to-image translation methods, propelled by the emergence of DNNs and adversarial training strategies. However, most existing methods focus on transfer of style and appearance, rather than on shape translation. The latter task is challenging, due to its intricate non-local nature, which calls for additional supervision. We mitigate this by descending the deep layers of a pre-trained network, where the deep features contain more semantics, and applying the translation from and between these deep features. Specifically, we leverage VGG, which is a classification network, pre-trained with large-scale semantic supervision. Our translation is performed in a cascaded, deep-to-shallow, fashion, along the deep feature hierarchy: we first translate between the deepest layers that encode the higher-level semantic content of the image, proceeding to translate the shallower layers, conditioned on the deeper ones. We show that our method is able to translate between different domains, which exhibit significantly different shapes. We evaluate our method both qualitatively and quantitatively and compare it to state-of-the-art image-to-image translation methods. Our code and trained models will be made available

    Synthesizing Training Images for Boosting Human 3D Pose Estimation

    Full text link
    Human 3D pose estimation from a single image is a challenging task with numerous applications. Convolutional Neural Networks (CNNs) have recently achieved superior performance on the task of 2D pose estimation from a single image, by training on images with 2D annotations collected by crowd sourcing. This suggests that similar success could be achieved for direct estimation of 3D poses. However, 3D poses are much harder to annotate, and the lack of suitable annotated training images hinders attempts towards end-to-end solutions. To address this issue, we opt to automatically synthesize training images with ground truth pose annotations. Our work is a systematic study along this road. We find that pose space coverage and texture diversity are the key ingredients for the effectiveness of synthetic training data. We present a fully automatic, scalable approach that samples the human pose space for guiding the synthesis procedure and extracts clothing textures from real images. Furthermore, we explore domain adaptation for bridging the gap between our synthetic training images and real testing photos. We demonstrate that CNNs trained with our synthetic images out-perform those trained with real photos on 3D pose estimation tasks
    corecore