110 research outputs found
Third Harmonic Characterization of Antiferromagnetic Heterostructures
Electrical switching of antiferromagnets is an exciting recent development in
spintronics, which promises active antiferromagnetic devices with high speed
and low energy cost. In this emerging field, there is an active debate about
the mechanisms of current-driven switching of antiferromagnets. Harmonic
characterization is a powerful tool to quantify current-induced spin-orbit
torques and spin Seebeck effect in heavy-metal/ferromagnet systems. However,
the harmonic measurement technique has never been verified in antiferromagnetic
heterostructures. Here, we report for the first time harmonic measurements in
Pt/-FeO bilayers, which are explained by our modeling of
higher-order harmonic voltages. As compared with ferromagnetic heterostructures
where all current-induced effects appear in the second harmonic signals, the
damping-like torque and thermally-induced magnetoelastic effect contributions
in Pt/-FeO emerge in the third harmonic voltage. Our results
provide a new path to probe the current-induced magnetization dynamics in
antiferromagnets, promoting the application of antiferromagnetic spintronic
devices
Biallelic variants in ADAMTS15 cause a novel form of distal arthrogryposis
Purpose We aimed to identify the underlying genetic cause for a novel form of distal arthrogryposis. Methods Rare variant family-based genomics, exome sequencing, and disease-specific panel sequencing were used to detect ADAMTS15 variants in affected individuals. Adamts15 expression was analyzed at the single-cell level during murine embryogenesis. Expression patterns were characterized using in situ hybridization and RNAscope. Results We identified homozygous rare variant alleles of ADAMTS15 in 5 affected individuals from 4 unrelated consanguineous families presenting with congenital flexion contractures of the interphalangeal joints and hypoplastic or absent palmar creases. Radiographic investigations showed physiological interphalangeal joint morphology. Additional features included knee, Achilles tendon, and toe contractures, spinal stiffness, scoliosis, and orthodontic abnormalities. Analysis of mouse whole-embryo single-cell sequencing data revealed a tightly regulated Adamts15 expression in the limb mesenchyme between embryonic stages E11.5 and E15.0. A perimuscular and peritendinous expression was evident in in situ hybridization in the developing mouse limb. In accordance, RNAscope analysis detected a significant coexpression with Osr1, but not with markers for skeletal muscle or joint formation. Conclusion In aggregate, our findings provide evidence that rare biallelic recessive trait variants in ADAMTS15 cause a novel autosomal recessive connective tissue disorder, resulting in a distal arthrogryposis syndrome
Loss of the BMP Antagonist, SMOC-1, Causes Ophthalmo-Acromelic (Waardenburg Anophthalmia) Syndrome in Humans and Mice
Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1tm1a) that reduces mRNA to âŒ10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1tm1a/tm1a). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1tm1a/tm1a embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice
- âŠ