425 research outputs found

    Evolution of Genetic Techniques: Past, Present, and Beyond.

    Get PDF
    Genetics is the study of heredity, which means the study of genes and factors related to all aspects of genes. The scientific history of genetics began with the works of Gregor Mendel in the mid-19th century. Prior to Mendel, genetics was primarily theoretical whilst, after Mendel, the science of genetics was broadened to include experimental genetics. Developments in all fields of genetics and genetic technology in the first half of the 20th century provided a basis for the later developments. In the second half of the 20th century, the molecular background of genetics has become more understandable. Rapid technological advancements, followed by the completion of Human Genome Project, have contributed a great deal to the knowledge of genetic factors and their impact on human life and diseases. Currently, more than 1800 disease genes have been identified, more than 2000 genetic tests have become available, and in conjunction with this at least 350 biotechnology-based products have been released onto the market. Novel technologies, particularly next generation sequencing, have dramatically accelerated the pace of biological research, while at the same time increasing expectations. In this paper, a brief summary of genetic history with short explanations of most popular genetic techniques is given

    Saving Lives: The Principle of Distinction and the Realities of Modern War

    Get PDF
    WOS: 000332942700005PubMed ID: 24778561In this study, we assessed the feasibility of fetal RhD genotyping by analysis of cell-free fetal DNA(cffDNA) extracted from plasma samples of Rhesus (Rh) D-negative pregnant women by using real-time polymerase chain reaction (PCR). Fetal genotyping was performed on 30 RhD-negative women between 9 and 39 weeks of gestation who were referred to us for invasive testing [amniocentesis/chorionic villi sampling (CVS)]. The fetal RHD genotype was determined based on real-time PCR method. Exons 7 and 10 of the RHD and SRY genes were targeted. Among the pregnant women, 12 were carrying male and 17 were carrying female fetuses. Out of 29 pregnant women, 21 had RhD-positive and nine had RhD-negative fetuses. One sample) case 12, whose blood group was found to be AB Rh [+] (was excluded due to controversial results from repeated serological analyses. All prenatal results were in concordance with postnatal RhD status and fetal sex without false-positive or -negative results. Performing real-time PCR on cffDNA showed accurate, efficient and reliable results, allowing rapid and high throughput non invasive determination of fetal sex and RhD status in clinical samples
    corecore