5 research outputs found

    Influence Of Building Zoning On Annual Energy Demand

    Get PDF
    Simulation tools are widely used to assess the energy consumption of a building. In the modeling process, some choices should be made by the simulation tool user such as the division of the building into thermal zones. The zoning process is user dependent, which results in some difference in energy consumption results and model set-up and computational times. The aim of this work is to assess the influence of building zoning on the results of the dynamic thermal simulation including airflow and thermal transfers between zones For this purpose, several different building zonings are applied to the same office building, and then the results of the dynamic thermal simulations are compared in terms of energy consumption (heating, cooling, and auxiliaries) and computational and set-up times. To assess the impact of thermal zoning, five cases are studied (from the most to the least complex): - 1) *49-zone model* : each zone gathers the premises with the same air handling system, the same occupancy profile, at each floor and building orientation. - 2) *44-zone model* : the premises containing the same air handling system are gathered at every floor, even though their occupancy profile is different. - 3) *26-zone model*: all floors are merged, except for the first and the top floors (under-roof). - 4) *21-zone model* : the first and the under-roof floors are merged with the others if the premises have the same occupancy profile and handling system. - 5) *11-zone model* : the premises with a different orientation but with the same occupancy profile and handling system are gathered. The importance of airflow coupling is evaluated by using the most detailed model (49 zones) and comparing the cases with or without considering air transfer from offices to corridors and toilets (from which air is extracted). Then, to study the impact of thermally connecting juxtaposed zones, the “21-zone model” with and without thermal transfer are compared. Finally, the impact of merging the floors is analyzed by considering different roof and floor insulations and the impact of merging the orientations is studied by using different glazed surface ratio

    Accurate Identification and Quantification of DNA Species by Next Generation Sequencing in Adeno-Associated Viral Vectors Produced in Insect Cells

    No full text
    Accurate Identification and Quantification of DNA Species by Next Generation Sequencing in Adeno-Associated Viral Vectors Produced in Insect Cells. 20. Annual Meeting of the American-Society-of-Gene-and-Cell-Therapy (ASGCT

    Advanced Characterization of DNA Molecules in rAAV Vector Preparations by Single-stranded Virus Next-generation Sequencing

    No full text
    International audienceRecent successful clinical trials with recombinant adeno-associated viral vectors (rAAVs) have led to a renewed interest in gene therapy. However, despite extensive developments to improve vector-manufacturing processes, undesirable DNA contaminants in rAAV preparations remain a major safety concern. Indeed, the presence of DNA fragments containing antibiotic resistance genes, wild-type AAV, and packaging cell genomes has been found in previous studies using quantitative polymerase chain reaction (qPCR) analyses. However, because qPCR only provides a partial view of the DNA molecules in rAAV preparations, we developed a method based on next-generation sequencing (NGS) to extensively characterize single-stranded DNA virus preparations (SSV-Seq). In order to validate SSV-Seq, we analyzed three rAAV vector preparations produced by transient transfection of mammalian cells. Our data were consistent with qPCR results and showed a quasi-random distribution of contaminants originating from the packaging cells genome. Finally, we found single-nucleotide variants (SNVs) along the vector genome but no evidence of large deletions. Altogether, SSV-Seq could provide a characterization of DNA contaminants and a map of the rAAV genome with unprecedented resolution and exhaustiveness. We expect SSV-Seq to pave the way for a new generation of quality controls, guiding process development toward rAAV preparations of higher potency and with improved safety profiles

    Short-lived recombinant adeno-associated virus transgene expression in dystrophic muscle is associated with oxidative damage to transgene mRNA

    No full text
    International audiencePreclinical gene therapy strategies using recombinant adeno-associated virus (AAV) vectors in animal models of Duchenne muscular dystrophy have shown dramatic phenotype improvements, but long-lasting efficacy remains questionable. It is believed that in dystrophic muscles, transgene persistence is hampered, notably by the progressive loss of therapeutic vector genomes resulting from muscle fibers degeneration. Intracellular metabolic perturbations resulting from dystrophin deficiency could also be additional factors impacting on rAAV genomes and transgene mRNA molecular fate. In this study, we showed that rAAV genome loss is not the only cause of reduced transgene mRNA level and we assessed the contribution of transcriptional and post-transcriptional factors. We ruled out the implication of transgene silencing by epigenetic mechanisms and demonstrated that rAAV inhibition occurred mostly at the post-transcriptional level. Since Duchenne muscular dystrophy (DMD) physiopathology involves an elevated oxidative stress, we hypothesized that in dystrophic muscles, transgene mRNA could be damaged by oxidative stress. In the mouse and dog dystrophic models, we found that rAAV-derived mRNA oxidation was increased. Interestingly, when a high expression level of a therapeutic transgene is achieved, oxidation is less pronounced. These findings provide new insights into rAAV transductions in dystrophic muscles, which ultimately may help in the design of more effective clinical trials
    corecore