27 research outputs found

    Feudal Antecedents in Anglo-Saxon England

    Get PDF
    Englis

    Bicistronic Lentiviruses Containing a Viral 2A Cleavage Sequence Reliably Co-Express Two Proteins and Restore Vision to an Animal Model of LCA1

    Get PDF
    The disease processes underlying inherited retinal disease are complex and are not completely understood. Many of the corrective gene therapies designed to treat diseases linked to mutations in genes specifically expressed in photoreceptor cells restore function to these cells but fail to stop progression of the disease. There is growing consensus that effective treatments for these diseases will require delivery of multiple therapeutic proteins that will be selected to treat specific aspects of the disease process. The purpose of this study was to design a lentiviral transgene that reliably expresses all of the proteins it encodes and does so in a consistent manner among infected cells. We show, using both in vitro and in vivo analyses, that bicistronic lentiviral transgenes encoding two fluorescent proteins fused to a viral 2A-like cleavage peptide meet these expression criteria. To determine if this transgene design is suitable for therapeutic applications, we replaced one of the fluorescent protein genes with the gene encoding guanylate cyclase -1 (GC1) and delivered lentivirus carrying this transgene to the retinas of the GUCY1*B avian model of Leber congenital amaurosis – 1 (LCA1). GUCY1*B chickens carry a null mutation in the GC1 gene that disrupts photoreceptor function and causes blindness at hatching, a phenotype that closely matches that observed in humans with LCA1. We found that treatment of these animals with the 2A lentivector encoding GC1 restored vision to these animals as evidenced by the presence of optokinetic reflexes. We conclude that 2A-like peptides, with proper optimization, can be successfully incorporated into therapeutic vectors designed to deliver multiple proteins to neural retinal. These results highlight the potential of this vector design to serve as a platform for the development of combination therapies designed to enhance or prolong the benefits of corrective gene therapies

    Rolling out Xpert MTB/RIF® for tuberculosis detection in HIV-positive populations: An opportunity for systems strengthening

    No full text
    Background: To eliminate preventable deaths, disease and suffering due to tuberculosis ,improved diagnostic capacity is critical. The Cepheid Xpert MTB/RIF® assay is recommended by the World Health Organization as the initial diagnostic test for people with suspected HIV associatedtuberculosis. However, despite high expectations, its scale-up in real-world settings has faced challenges, often due to the systems that support it. Opportunities for System Strengthening: In this commentary, we discuss needs and opportunities for systems strengthening to support widespread scale-up of Xpert MTB/RIF as they relate to each step within the tuberculosis diagnostic cascade, from finding presumptive patients, to collecting, transporting and testing sputum specimens, to reporting and receiving results, to initiating and monitoring treatment and, ultimately, to ensuring successful and timely treatment and cure. Investments in evidence-based interventions at each step along the cascade and within the system as a whole will augment not only the utility of Xpert MTB/RIF, but also the successful implementation of future diagnostic tests. Conclusion: Xpert MTB/RIF will only improve patient outcomes if optimally implemented within the context of strong tuberculosis programmes and systems. Roll-out of this technology to people living with HIV and others in resource-limited settings offers the opportunity to leverage current tuberculosis and HIV laboratory, diagnostic and programmatic investments, while also addressing challenges and strengthening coordination between laboratory systems, laboratory-programme interfaces, and tuberculosis-HIV programme interfaces. If successful, the benefits of this tool could extend beyond progress toward global End TB Strategy goals, to improve system-wide capacity for global disease detection and control
    corecore