319 research outputs found
Fluctuations and Dissipation of Coherent Magnetization
A quantum mechanical model is used to derive a generalized Landau-Lifshitz
equation for a magnetic moment, including fluctuations and dissipation. The
model reproduces the Gilbert-Brown form of the equation in the classical limit.
The magnetic moment is linearly coupled to a reservoir of bosonic degrees of
freedom. Use of generalized coherent states makes the semiclassical limit more
transparent within a path-integral formulation. A general
fluctuation-dissipation theorem is derived. The magnitude of the magnetic
moment also fluctuates beyond the Gaussian approximation. We discuss how the
approximate stochastic description of the thermal field follows from our
result. As an example, we go beyond the linear-response method and show how the
thermal fluctuations become anisotropy-dependent even in the uniaxial case.Comment: 22 page
Medication reconciliation as a strategy for preventing medication errors
ABSTRACT One of the current barriers proposed to avoid possible medication errors, and consequently harm to patients, is the medication reconciliation, a process in which drugs used by patients prior to hospitalization can be compared with those prescribed in the hospital. This study describes the results of a pharmacist based reconciliation conducted during six months in clinical units of a university hospital. Fourteen patients (23.33%) had some kind of problem related to medicine. The majority (80%) of medication errors were due to medication omission. Pharmaceutical interventions acceptance level was 90%. The results suggest that pharmacists based reconciliation can have a relevant role in preventing medication errors and adverse events. Moreover, the detailed interview, conducted by the pharmacist, is able to rescue important information regarding the use of drugs, allowing to avoid medications errors and patient injury
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
An Ultra-Low Background PMT for Liquid Xenon Detectors
Results are presented from radioactivity screening of two models of
photomultiplier tubes designed for use in current and future liquid xenon
experiments. The Hamamatsu 5.6 cm diameter R8778 PMT, used in the LUX dark
matter experiment, has yielded a positive detection of four common radioactive
isotopes: 238U, 232Th, 40K, and 60Co. Screening of LUX materials has rendered
backgrounds from other detector materials subdominant to the R8778
contribution. A prototype Hamamatsu 7.6 cm diameter R11410 MOD PMT has also
been screened, with benchmark isotope counts measured at <0.4 238U / <0.3 232Th
/ <8.3 40K / 2.0+-0.2 60Co mBq/PMT. This represents a large reduction, equal to
a change of \times 1/24 238U / \times 1/9 232Th / \times 1/8 40K per PMT,
between R8778 and R11410 MOD, concurrent with a doubling of the photocathode
surface area (4.5 cm to 6.4 cm diameter). 60Co measurements are comparable
between the PMTs, but can be significantly reduced in future R11410 MOD units
through further material selection. Assuming PMT activity equal to the measured
90% upper limits, Monte Carlo estimates indicate that replacement of R8778 PMTs
with R11410 MOD PMTs will change LUX PMT electron recoil background
contributions by a factor of \times1/25 after further material selection for
60Co reduction, and nuclear recoil backgrounds by a factor of \times 1/36. The
strong reduction in backgrounds below the measured R8778 levels makes the
R11410 MOD a very competitive technology for use in large-scale liquid xenon
detectors.Comment: v2 updated to include content after reviewer comments (Sep 2012
LUXSim: A Component-Centric Approach to Low-Background Simulations
Geant4 has been used throughout the nuclear and high-energy physics community
to simulate energy depositions in various detectors and materials. These
simulations have mostly been run with a source beam outside the detector. In
the case of low-background physics, however, a primary concern is the effect on
the detector from radioactivity inherent in the detector parts themselves. From
this standpoint, there is no single source or beam, but rather a collection of
sources with potentially complicated spatial extent. LUXSim is a simulation
framework used by the LUX collaboration that takes a component-centric approach
to event generation and recording. A new set of classes allows for multiple
radioactive sources to be set within any number of components at run time, with
the entire collection of sources handled within a single simulation run.
Various levels of information can also be recorded from the individual
components, with these record levels also being set at runtime. This
flexibility in both source generation and information recording is possible
without the need to recompile, reducing the complexity of code management and
the proliferation of versions. Within the code itself, casting geometry objects
within this new set of classes rather than as the default Geant4 classes
automatically extends this flexibility to every individual component. No
additional work is required on the part of the developer, reducing development
time and increasing confidence in the results. We describe the guiding
principles behind LUXSim, detail some of its unique classes and methods, and
give examples of usage.
* Corresponding author, [email protected]: 45 pages, 15 figure
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
- …