4,219 research outputs found

    Feeling the Heat: The Endangered Species Act and Climate Change

    Get PDF
    The following Note discusses the effects that some of these rule changes will have on the Endangered Species Act in the face of uncertain climate change and the science behind it. Part I examines the background of the Act, its current rules, climate change’s impact on the environment, and judicial deference to agency interpretations. Part II analyzes how the current rules further the goals of the Act, how the proposed changes to those rules will add to the confusion surrounding the Act’s standards, and the role climate change studies have in both of those implementations. Part III will propose a few alternatives for how the U.S. Fish and Wildlife Service and the Endangered Species Act can accommodate climate change, such as a broader ecosystem-based approach, a narrower approach focused on climate-impacted species, and a conjunctive effort to work with other parties

    Stochastic dynamics beyond the weak coupling limit: thermalization

    Full text link
    We discuss the structure and asymptotic long-time properties of coupled equations for the moments of a Brownian particle's momentum derived microscopically beyond the lowest approximation in the weak coupling parameter. Generalized fluctuation-dissipation relations are derived and shown to ensure convergence to thermal equilibrium at any order of perturbation theory.Comment: 6+ page

    Integral Relaxation Time of Single-Domain Ferromagnetic Particles

    Full text link
    The integral relaxation time \tau_{int} of thermoactivating noninteracting single-domain ferromagnetic particles is calculated analytically in the geometry with a magnetic field H applied parallel to the easy axis. It is shown that the drastic deviation of \tau_{int}^{-1} from the lowest eigenvalue of the Fokker-Planck equation \Lambda_1 at low temperatures, starting from some critical value of H, is the consequence of the depletion of the upper potential well. In these conditions the integral relaxation time consists of two competing contributions corresponding to the overbarrier and intrawell relaxation processes.Comment: 8 pages, 3 figure

    Classical Langevin dynamics of a charged particle moving on a sphere and diamagnetism: A surprise

    Get PDF
    It is generally known that the orbital diamagnetism of a classical system of charged particles in thermal equilibrium is identically zero -- the Bohr-van Leeuwen theorem. Physically, this null result derives from the exact cancellation of the orbital diamagnetic moment associated with the complete cyclotron orbits of the charged particles by the paramagnetic moment subtended by the incomplete orbits skipping the boundary in the opposite sense. Motivated by this crucial, but subtle role of the boundary, we have simulated here the case of a finite but \emph{unbounded} system, namely that of a charged particle moving on the surface of a sphere in the presence of an externally applied uniform magnetic field. Following a real space-time approach based on the classical Langevin equation, we have computed the orbital magnetic moment which now indeed turns out to be non-zero, and has the diamagnetic sign. To the best of our knowledge, this is the first report of the possibility of finite classical diamagnetism in principle, and it is due to the avoided cancellation.Comment: Accepted for publication in EP

    The Quantum Mechanics of Hyperion

    Full text link
    This paper is motivated by the suggestion [W. Zurek, Physica Scripta, T76, 186 (1998)] that the chaotic tumbling of the satellite Hyperion would become non-classical within 20 years, but for the effects of environmental decoherence. The dynamics of quantum and classical probability distributions are compared for a satellite rotating perpendicular to its orbital plane, driven by the gravitational gradient. The model is studied with and without environmental decoherence. Without decoherence, the maximum quantum-classical (QC) differences in its average angular momentum scale as hbar^{2/3} for chaotic states, and as hbar^2 for non-chaotic states, leading to negligible QC differences for a macroscopic object like Hyperion. The quantum probability distributions do not approach their classical limit smoothly, having an extremely fine oscillatory structure superimposed on the smooth classical background. For a macroscopic object, this oscillatory structure is too fine to be resolved by any realistic measurement. Either a small amount of smoothing (due to the finite resolution of the apparatus) or a very small amount of environmental decoherence is sufficient ensure the classical limit. Under decoherence, the QC differences in the probability distributions scale as (hbar^2/D)^{1/6}, where D is the momentum diffusion parameter. We conclude that decoherence is not essential to explain the classical behavior of macroscopic bodies.Comment: 17 pages, 24 figure

    Accurate Results from Perturbation Theory for Strongly Frustrated S=1/2S=1/2 Heisenberg Spin Clusters

    Full text link
    We investigate the use of perturbation theory in finite sized frustrated spin systems by calculating the effect of quantum fluctuations on coherent states derived from the classical ground state. We first calculate the ground and first excited state wavefunctions as a function of applied field for a 12-site system and compare with the results of exact diagonalization. We then apply the technique to a 20-site system with the same three fold site coordination as the 12-site system. Frustration results in asymptotically convergent series for both systems which are summed with Pad\'e approximants. We find that at zero magnetic field the different connectivity of the two systems leads to a triplet first excited state in the 12-site system and a singlet first excited state in the 20-site system, while the ground state is a singlet for both. We also show how the analytic structure of the Pad\'e approximants at λ1|\lambda| \simeq 1 evolves in the complex λ\lambda plane at the values of the applied field where the ground state switches between spin sectors and how this is connected with the non-trivial dependence of the number on the strength of quantum fluctuations. We discuss the origin of this difference in the energy spectra and in the analytic structures. We also characterize the ground and first excited states according to the values of the various spin correlation functions.Comment: Final version, accepted for publication in Physical review

    Manifestation of nonequilibrium initial conditions in molecular rotation: the generalized J-diffusion model

    Full text link
    In order to adequately describe molecular rotation far from equilibrium, we have generalized the J-diffusion model by allowing the rotational relaxation rate to be angular momentum dependent. The calculated nonequilibrium rotational correlation functions (CFs) are shown to decay much slower than their equilibrium counterparts, and orientational CFs of hot molecules exhibit coherent behavior, which persists for several rotational periods. As distinct from the results of standard theories, rotational and orientational CFs are found to dependent strongly on the nonequilibrium preparation of the molecular ensemble. We predict the Arrhenius energy dependence of rotational relaxation times and violation of the Hubbard relations for orientational relaxation times. The standard and generalized J-diffusion models are shown to be almost indistinguishable under equilibrium conditions. Far from equilibrium, their predictions may differ dramatically

    Intake and digestibility of tall fescue supplemented with co-product feeds

    Get PDF
    Cows offered low quality hay require supplementation to meet their nutritional requirements. Our objective was to determine the impact of supplementation with soybean hulls (SH), distiller’s dried grains with solubles (DDGS), or a 50:50 mixture of each (MIX) at 0.5% of body weight on ruminal fermentation characteristics and in situ forage disappearance in lactating (n = 3) and non-lactating (n = 3) ruminally cannulated cows (679 ± 18.7 kg body weight). Tall fescue was offered free-choice from large round bales for 6, 21-d periods. Dacron bags containing ground fescue hay were placed into the rumen of each cow at specified intervals over a 7-d period and removed on d 21. Rumen fluid samples were collected on d 21 of each period at 2 h intervals from 1600-2400 h for analyses of ruminal ammonia and volatile fatty acids (VFA). Ruminal forage disappearance was not affected (P ≥ 0.44) by diets. Total VFA were greater (P \u3c 0.05) from SH but the propionate percentage was greater (P \u3c 0.05) from DDGS. Therefore, supplementation with DDGS should improve the energy status of cows fed poor-quality hay compared with SH or MIX

    Growth and characterization of sputtered BSTO/BaM multilayers

    Get PDF
    Multilayers of Ba0.5Sr0.5TiO3 (BSTO) and BaFe12O19 (BaM), with tunable permeability and permittivity are attractive systems for radio frequency and microwave applications. We have grown multilayers of BSTO and BaM using magnetron sputtering on Al2O3 substrates. Film growth conditions such as sputtering parameters were optimized to obtain high quality multilayers. X-ray diffraction established that both BSTO and BaM were formed and cross-sectional SEM studies showed sharp interfaces between BSTO and BaM layers. Magnetization showed a large coercivity (similar to 2000 Oe) consistent with the hexaferrite component. The hysteresis loops also revealed the distinct influence of magnetocrystalline and shape anisotropies at different temperatures

    Doping dependence of the Neel temperature in Mott-Hubbard antiferromagnets: Effect of vortices

    Full text link
    The rapid destruction of long-range antiferromagnetic order upon doping of Mott-Hubbard antiferromagnetic insulators is studied within a generalized Berezinskii-Kosterlitz-Thouless renormalization group theory in accordance with recent calculations suggesting that holes dress with vortices. We calculate the doping-dependent Neel temperature in good agreement with experiments for high-Tc cuprates. Interestingly, the critical doping where long-range order vanishes at zero temperature is predicted to be xc ~ 0.02, independently of any energy scales of the system.Comment: 4 pages with 3 figures included, minor revisions, to be published in PR
    corecore